Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 5322, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087724

RESUMEN

Forest production efficiency (FPE) metric describes how efficiently the assimilated carbon is partitioned into plants organs (biomass production, BP) or-more generally-for the production of organic matter (net primary production, NPP). We present a global analysis of the relationship of FPE to stand-age and climate, based on a large compilation of data on gross primary production and either BP or NPP. FPE is important for both forest production and atmospheric carbon dioxide uptake. We find that FPE increases with absolute latitude, precipitation and (all else equal) with temperature. Earlier findings-FPE declining with age-are also supported by this analysis. However, the temperature effect is opposite to what would be expected based on the short-term physiological response of respiration rates to temperature, implying a top-down regulation of carbon loss, perhaps reflecting the higher carbon costs of nutrient acquisition in colder climates. Current ecosystem models do not reproduce this phenomenon. They consistently predict lower FPE in warmer climates, and are therefore likely to overestimate carbon losses in a warming climate.

2.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190507, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32892728

RESUMEN

In Europe, three widespread extreme summer drought and heat (DH) events have occurred in 2003, 2010 and 2018. These events were comparable in magnitude but varied in their geographical distribution and biomes affected. In this study, we perform a comparative analysis of the impact of the DH events on ecosystem CO2 fluxes over Europe based on an ensemble of 11 dynamic global vegetation models (DGVMs), and the observation-based FLUXCOM product. We find that all DH events were associated with decreases in net ecosystem productivity (NEP), but the gross summer flux anomalies differ between DGVMs and FLUXCOM. At the annual scale, FLUXCOM and DGVMs indicate close to neutral or above-average land CO2 uptake in DH2003 and DH2018, due to increased productivity in spring and reduced respiration in autumn and winter compensating for less photosynthetic uptake in summer. Most DGVMs estimate lower gross primary production (GPP) sensitivity to soil moisture during extreme summers than FLUXCOM. Finally, we show that the different impacts of the DH events at continental-scale GPP are in part related to differences in vegetation composition of the regions affected and to regional compensating or offsetting effects from climate anomalies beyond the DH centres. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Asunto(s)
Dióxido de Carbono/análisis , Cambio Climático , Sequías , Ecosistema , Clima Extremo , Calor , Ciclo del Carbono , Europa (Continente) , Calor Extremo , Modelos Teóricos , Estaciones del Año
3.
Sci Adv ; 6(24): eaba2724, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32577519

RESUMEN

In summer 2018, central and northern Europe were stricken by extreme drought and heat (DH2018). The DH2018 differed from previous events in being preceded by extreme spring warming and brightening, but moderate rainfall deficits, yet registering the fastest transition between wet winter conditions and extreme summer drought. Using 11 vegetation models, we show that spring conditions promoted increased vegetation growth, which, in turn, contributed to fast soil moisture depletion, amplifying the summer drought. We find regional asymmetries in summer ecosystem carbon fluxes: increased (reduced) sink in the northern (southern) areas affected by drought. These asymmetries can be explained by distinct legacy effects of spring growth and of water-use efficiency dynamics mediated by vegetation composition, rather than by distinct ecosystem responses to summer heat/drought. The asymmetries in carbon and water exchanges during spring and summer 2018 suggest that future land-management strategies could influence patterns of summer heat waves and droughts under long-term warming.

4.
J Plant Physiol ; 203: 3-15, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27233774

RESUMEN

Primary productivity of terrestrial vegetation is expected to increase under the influence of increasing atmospheric carbon dioxide concentrations ([CO2]). Depending on the fate of such additionally fixed carbon, this could lead to an increase in terrestrial carbon storage, and thus a net terrestrial sink of atmospheric carbon. Such a mechanism is generally believed to be the primary global driver behind the observed large net uptake of anthropogenic CO2 emissions by the biosphere. Mechanisms driving CO2 uptake in the Terrestrial Biosphere Models (TBMs) used to attribute and project terrestrial carbon sinks, including that from increased [CO2], remain in large parts unchanged since those models were conceived two decades ago. However, there exists a large body of new data and understanding providing an opportunity to update these models, and directing towards important topics for further research. In this review we highlight recent developments in understanding of the effects of elevated [CO2] on photosynthesis, and in particular on the fate of additionally fixed carbon within the plant with its implications for carbon turnover rates, on the regulation of photosynthesis in response to environmental limitations on in-plant carbon sinks, and on emergent ecosystem responses. We recommend possible avenues for model improvement and identify requirements for better data on core processes relevant to the understanding and modelling of the effect of increasing [CO2] on the global terrestrial carbon sink.


Asunto(s)
Dióxido de Carbono/metabolismo , Secuestro de Carbono , Ecosistema , Modelos Teóricos , Estadística como Asunto , Fotosíntesis
5.
J Chem Phys ; 123(21): 214304, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16356045

RESUMEN

A coupled-channel Schrodinger equation (CSE) model of N2 photodissociation, which includes the effects of all interactions between the b, c, and o 1Pi u and the C and C' 3Pi u states, is employed to study the effects of rotation on the lowest-upsilon 1Pi u-X 1Sigmag+(upsilon,0) band oscillator strengths and 1Pi u predissociation linewidths. Significant rotational dependences are found which are in excellent agreement with recent experimental results, where comparisons are possible. New extreme-ultraviolet (EUV) photoabsorption spectra of the key b 1Pi u<--X 1Sigmag +(3,0) transition of N2 are also presented and analyzed, revealing a b(upsilon=3) predissociation linewidth peaking near J=11. This behavior can be reproduced only if the triplet structure of the C state is included explicitly in the CSE-model calculations, with a spin-orbit constant A approximately 15 cm(-1) for the diffuse C(upsilon=9) level which accidentally predissociates b(upsilon=3). The complex rotational behavior of the b-X(3,0) and other bands may be an important component in the modeling of EUV transmission through nitrogen-rich planetary atmospheres.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA