Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(7): eadl4876, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354250

RESUMEN

The synaptonemal complex (SC) is a zipper-like protein assembly that links homologous chromosomes to regulate recombination and segregation during meiosis. The SC has been notoriously refractory to in vitro reconstitution, thus leaving its molecular organization largely unknown. Here, we report a moonlighting function of two paralogous S-phase kinase-associated protein 1 (Skp1)-related proteins (SKR-1 and SKR-2), well-known adaptors of the Skp1-Cul1-F-box (SCF) ubiquitin ligase, as the key missing components of the SC in Caenorhabditis elegans. SKR proteins repurpose their SCF-forming interfaces to dimerize and interact with meiosis-specific SC proteins, thereby driving synapsis independent of SCF activity. SKR-1 enables the formation of the long-sought-after soluble complex with previously identified SC proteins in vitro, which we propose it to represent a complete SC building block. Our findings demonstrate how a conserved cell cycle regulator has been co-opted to interact with rapidly evolving meiotic proteins to construct the SC and provide a foundation for understanding its structure and assembly mechanisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Complejo Sinaptonémico/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(21): e2117865119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35576467

RESUMEN

Crossover formation is essential for proper segregation of homologous chromosomes during meiosis. Here, we show that Caenorhabditis elegans cyclin-dependent kinase 2 (CDK-2) partners with cyclin-like protein COSA-1 to promote crossover formation by promoting conversion of meiotic double-strand breaks into crossover­specific recombination intermediates. Further, we identify MutSγ component MSH-5 as a CDK-2 phosphorylation target. MSH-5 has a disordered C-terminal tail that contains 13 potential CDK phosphosites and is required to concentrate crossover­promoting proteins at recombination sites. Phosphorylation of the MSH-5 tail appears dispensable in a wild-type background, but when MutSγ activity is partially compromised, crossover formation and retention of COSA-1 at recombination sites are exquisitely sensitive to phosphosite loss. Our data support a model in which robustness of crossover designation reflects a positive feedback mechanism involving CDK-2­mediated phosphorylation and scaffold-like properties of the MSH5 C-terminal tail, features that combine to promote full recruitment and activity of crossover­promoting complexes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Quinasa 2 Dependiente de la Ciclina , Proteínas de Unión al ADN , Meiosis , Complejo Sinaptonémico , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica , Intercambio Genético , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Fosforilación , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
3.
J Cell Biol ; 219(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32211899

RESUMEN

The synaptonemal complex (SC) is a tripartite protein scaffold that forms between homologous chromosomes during meiosis. Although the SC is essential for stable homologue pairing and crossover recombination in diverse eukaryotes, it is unknown how individual components assemble into the highly conserved SC structure. Here we report the biochemical identification of two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans. SYP-5 and SYP-6 are paralogous to each other and play redundant roles in synapsis, providing an explanation for why these genes have evaded previous genetic screens. Superresolution microscopy reveals that they localize between the chromosome axes and span the width of the SC in a head-to-head manner, similar to the orientation of other known transverse filament proteins. Using genetic redundancy and structure-function analyses to truncate C-terminal tails of SYP-5/6, we provide evidence supporting the role of SC in both limiting and promoting crossover formation.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Recombinación Genética/genética , Complejo Sinaptonémico/genética , Animales , Emparejamiento Cromosómico/genética , Cromosomas/genética , Intercambio Genético/genética , Meiosis/genética , Mutación/genética
4.
Dev Biol ; 383(1): 15-27, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24036311

RESUMEN

Genome-wide epigenetic reprogramming is required for successful preimplantation development. Inappropriate or deficient chromatin regulation can result in defective lineage specification and loss of genomic imprinting, compromising normal development. Here we report that two members of the RNA polymerase II associated factor, homolog (Saccharomyces cerevisiae) complex (PAF1 complex) components, Ctr9 and Rtf1, are required during mammalian preimplantation development. We demonstrate that Ctr9-deficient embryos fail to correctly specify lineages at the blastocyst stage. Expression of some lineage specific factors is markedly reduced in Ctr9 knockdown embryos, including Eomes, Elf5 and Sox2, while others are inappropriately expressed (Oct4, Nanog, Gata6, Fgf4 and Sox17). We also show that several imprinted genes (Mest, Peg3, Snrpn and Meg3) are aberrantly expressed although allele specific DNA methylation is not altered. We document a loss of histone H3 lysine 36 trimethylation (H3K36me3) in Ctr9-deficient embryos and confirm that knockdown of either Setd2 or Rtf1 results in similar phenotypes. These findings show that the PAF1 complex is required for mammalian development, likely through regulation of H3K36me3, and indicate functional conservation of the PAF1 complex from yeast to mammals in vivo.


Asunto(s)
Proteínas Portadoras/metabolismo , Linaje de la Célula/fisiología , Desarrollo Embrionario/fisiología , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Impresión Genómica/fisiología , Histonas/metabolismo , Animales , Secuencia de Bases , Metilación de ADN , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Ratones , Microinyecciones , Datos de Secuencia Molecular , ARN Bicatenario/biosíntesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...