Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1427147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346563

RESUMEN

Over the past decade, boldine, a naturally occurring alkaloid found in several plant species including the Chilean Boldo tree, has garnered attention for its efficacy in rodent models of human disease. Some of the properties that have been attributed to boldine include antioxidant activities, neuroprotective and analgesic actions, hepatoprotective effects, anti-inflammatory actions, cardioprotective effects and anticancer potential. Compelling data now indicates that boldine blocks connexin (Cx) hemichannels (HCs) and that many if not all of its effects in rodent models of injury and disease are due to CxHC blockade. Here we provide an overview of boldine's pharmacological properties, including its efficacy in rodent models of common human injuries and diseases, and of its absorption, distribution, pharmacokinetics, and metabolism.

2.
J Cell Biol ; 218(6): 1871-1890, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31068376

RESUMEN

Inhibition of histone deacetylase 6 (HDAC6) was shown to support axon growth on the nonpermissive substrates myelin-associated glycoprotein (MAG) and chondroitin sulfate proteoglycans (CSPGs). Though HDAC6 deacetylates α-tubulin, we find that another HDAC6 substrate contributes to this axon growth failure. HDAC6 is known to impact transport of mitochondria, and we show that mitochondria accumulate in distal axons after HDAC6 inhibition. Miro and Milton proteins link mitochondria to motor proteins for axon transport. Exposing neurons to MAG and CSPGs decreases acetylation of Miro1 on Lysine 105 (K105) and decreases axonal mitochondrial transport. HDAC6 inhibition increases acetylated Miro1 in axons, and acetyl-mimetic Miro1 K105Q prevents CSPG-dependent decreases in mitochondrial transport and axon growth. MAG- and CSPG-dependent deacetylation of Miro1 requires RhoA/ROCK activation and downstream intracellular Ca2+ increase, and Miro1 K105Q prevents the decrease in axonal mitochondria seen with activated RhoA and elevated Ca2+ These data point to HDAC6-dependent deacetylation of Miro1 as a mediator of axon growth inhibition through decreased mitochondrial transport.


Asunto(s)
Histona Desacetilasa 6/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas de Unión al GTP rho/genética , Quinasas Asociadas a rho/genética , Acetilación/efectos de los fármacos , Animales , Transporte Axonal/efectos de los fármacos , Transporte Axonal/genética , Calcio/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/farmacología , Femenino , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasa 6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Glicoproteína Asociada a Mielina/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
3.
J Neuroinflammation ; 7: 77, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21073708

RESUMEN

BACKGROUND: Interferon gamma (IFNγ) is a pro-inflammatory cytokine, which may be up-regulated after trauma to the peripheral or central nervous system. Such changes include reactive gliosis and synaptic plasticity that are considered important responses to the proper regenerative response after injury. Also, IFNγ is involved in the upregulation of the major histocompatibility complex class I (MHC class I), which has recently been shown to play an important role in the synaptic plasticity process following axotomy. There is also evidence that IFNγ may interfere in the differentiation and survival of neuronal cells. However, little is known about the effects of IFNγ absence on spinal cord neurons after injury. METHODS: We performed a unilateral sciatic nerve transection injury in C57BL/6J (wild type) and IFNγ-KO (mutant) mice and studied motoneuron morphology using light and electron microscopy. One week after the lesion, mice from both strains were sacrificed and had their lumbar spinal cords processed for histochemistry (n = 5 each group) and transmission electron microscopy (TEM, n = 5 each group). Spinal cord sections from non-lesioned animals were also used to investigate neuronal survival and the presence of apoptosis with TUNEL and immunohistochemistry. RESULTS: We find that presumed motoneurons in the lower lumbar ventral horn exhibited a smaller soma size in the IFNγ-KO series, regardless of nerve lesion. In plastic embedded sections stained with toluidine blue, the IFNγ-KO mice demonstrated a greater proportion of degenerating neurons in the ventral horn when compared to the control series (p < 0.05). Apoptotic death is suggested based on TUNEL and caspase 3 immunostaining. A sciatic nerve axotomy did not further aggravate the neuronal loss. The cellular changes were supported by electron microscopy, which demonstrated ventral horn neurons exhibiting intracellular vacuoles as well as degenerating nuclei and cytoplasm in the IFNγ-KO mice. Adjacent glial cells showed features suggestive of phagocytosis. Additional ultrastructural studies showed a decreased number of pre-synaptic terminals apposing to motoneurons in mutant mice. Nevertheless, no statistical difference regarding the input covering could be detected among the studied strains. CONCLUSION: Altogether, these results suggest that IFNγ may be neuroprotective and its absence results in neuronal death, which is not further increased by peripheral axotomy.


Asunto(s)
Interferón gamma/inmunología , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/patología , Médula Espinal/inmunología , Médula Espinal/patología , Animales , Apoptosis , Axotomía , Humanos , Interferón gamma/genética , Vértebras Lumbares , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/inmunología , Neuronas Motoras/patología , Neuronas Motoras/ultraestructura , Fármacos Neuroprotectores/inmunología , Nervio Ciático/patología , Nervio Ciático/cirugía , Médula Espinal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA