Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077035

RESUMEN

The current study aims to evaluate the possible neuroprotective impact of gold nanoparticles (AuNPs) and an alpha-lipoic acid (ALA) mixture against brain damage in irradiated rats. AuNPs were synthesized and characterized using different techniques. Then, a preliminary investigation was carried out to determine the neuroprotective dose of AuNPs, where three single doses (500, 1000, and 1500 µg/kg) were orally administrated to male Wistar rats, one hour before being exposed to a single dose of 7Gy gamma radiation. One day following irradiation, the estimation of oxidative stress biomarkers (malondialdehyde, MDA; glutathione peroxidase, GPX), DNA fragmentation, and histopathological alterations were performed in brain cortical and hippocampal tissues in both normal and irradiated rats. The chosen neuroprotective dose of AuNPs (1000 µg/kg) was processed with ALA (100 mg/kg) to prepare the AuNPs-ALA mixture. The acute neuroprotective effect of AuNPs-ALA in irradiated rats was determined against valproic acid as a neuroprotective centrally acting reference drug. All drugs were orally administered one hour before the 7Gy-gamma irradiation. One day following irradiation, animals were sacrificed and exposed to examinations such as those of the preliminary experiment. Administration of AuNPs, ALA, and AuNPs-ALA mixture before irradiation significantly attenuated the radiation-induced oxidative stress through amelioration of MDA content and GPX activity along with alleviating DNA fragmentation and histopathological changes in both cortical and hippocampal tissues. Notably, the AuNPs-ALA mixture showed superior effect compared to that of AuNPs or ALA alone, as it mitigated oxidative stress, DNA damage, and histopathological injury collectively. Administration of AuNPs-ALA resulted in normalized MDA content, increased GPX activity, restored DNA content in the cortex and hippocampus besides only mild histopathological changes. The present data suggest that the AuNPs-ALA mixture may be considered a potential candidate for alleviating radiation-associated brain toxicity.


Asunto(s)
Nanopartículas del Metal , Fármacos Neuroprotectores , Ácido Tióctico , Animales , Antioxidantes/farmacología , Encéfalo , Oro/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Ratas , Ratas Wistar , Ácido Tióctico/farmacología
2.
Saudi Pharm J ; 27(6): 830-840, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31516325

RESUMEN

BACKGROUND: Life-threatening central venous catheter-related infections are primarily initiated by biofilm formation on the catheter surface. Antibiotic lock therapy is recommended for eradicating intraluminal biofilm. In the era of antibiotic resistance, antibiotics of natural origins provide an effective and cheap option for combating resistant strains. Garlic especially stole the spotlight because of its impressive antimicrobial effectiveness against such superbugs. AIM: Is to estimate the potential use of fresh garlic extract (FGE) as a lock agent against multi-drug resistant (MDR) bacteria. METHODS: The agar well diffusion and broth microdilution techniques were employed to test the antimicrobial activities of FGE against five MDR strains; E. coli, Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumoniae), Serratia marscens (S. marscens) and Methicillin-resistant Staphylococcus aureus (MRSA). Then the protective and therapeutic efficiencies of FGE against bacterial biofilms were in-vitro evaluated; at concentrations of 100, 75, 50 and 25%; in tissue culture plate (TCP) and on the polyurethane (PU) sheets using the crystal violet (CV) assay and colony-forming unit (CFU), respectively. Scanning electron microscopy (SEM) was also used to confirm eradication of biofilms on PU sheets. Finally, systemic and deep tissue infections by P. aeruginosa and MRSA were induced in mice that were then treated by FGE at either 100 or 200 mg/kg for seven days. Where the antibacterial activity was assessed by tissue and blood culturing at the end of the treatment period. Biochemical, hematological and histological parameters were also investigated. RESULTS: FGE exhibited potent in-vitro and in-vivo antibacterial and antibiofilm activities against MDR strains. It not only didn't exhibit toxicological effects at the hematological and the histological levels but also provided protective effects as demonstrated by the significant drop in the biochemical parameters. CONCLUSION: FGE has the potential to be used as a prophylactic and/or therapeutic lock agent against biofilm-associated infections caused by MDR bacteria.

3.
Environ Sci Pollut Res Int ; 24(31): 24272-24283, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28889190

RESUMEN

Exposure to either lead (Pb) or γ-irradiation (IR) results in oxidative stress in biological systems. Herein, we explored the potential anti-apoptotic effect of spermine (Spm) against lead and/or γ-irradiation-induced hepatotoxicity in male albino rats. Rats were divided into eight experimental groups of ten rats each: groups including negative control, whole body γ-irradiated (6 Gray (Gy)), lead acetate (PbAct) trihydrate orally administered (75 mg/kg bw ≡ 40 mg/kg bw Pb for 14 consecutive days), and Spm intraperitoneally dosed (10 mg/kg bw for 14 consecutive days) rats and groups subjected to combinations of Pb + IR, Spm + IR, Spm + Pb, and Spm + Pb followed by IR on day 14 (Spm + Pb + IR). A significant decrease in arginase activity as well as mRNA and protein levels of Bcl-2 and p21 was observed in rats intoxicated with Pb and/or γ-irradiation compared to controls, whereas Bax mRNA and protein levels were significantly increased. Also, an increased level of nitric oxide (NO) with a reduced arginase activity was observed in liver tissues of intoxicated rats. Spm co-treatment with lead and/or γ-irradiation attenuated the increase in Bax mRNA and protein expression, while it restored those of Bcl-2 and p21 together with NO levels and arginase activity to control values. Altogether, we suggest that Spm may be useful in combating free radical-induced apoptosis in Pb-intoxicated and/or γ-irradiated rats.


Asunto(s)
Apoptosis/efectos de los fármacos , Rayos gamma/efectos adversos , Plomo/toxicidad , Hígado/metabolismo , Sustancias Protectoras/farmacología , Espermina/farmacología , Animales , Hígado/efectos de los fármacos , Masculino , Ratas , Irradiación Corporal Total/efectos adversos
4.
Can J Physiol Pharmacol ; 90(4): 415-23, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22432737

RESUMEN

This study was conducted to evaluate the modulatory effect of aqueous extract of Curcuma longa (L.) against γ-irradiation (GR), which induces biochemical disorders in male rats. The sublethal dose of GR was determined in primary hepatocytes. Also, the effect of C. longa extract was examined for its activity against GR. In rats, C. longa extract was administered daily (200 mg/kg body mass) for 21 days before, and 7 days after GR exposure (6.5 Gy). The lipid profile and antioxidant status, as well as levels of transaminases, interleukin-6 (IL-6), and tumour necrosis factor α (TNFα) were assessed. The results showed that in hepatocytes, the aqueous extract exhibited radioprotective activity against exposure to GR. Exposure of untreated rats to GR resulted in transaminase disorders, lipid abnormalities, elevation of lipid peroxidation, trace element alterations, release of IL-6 and TNF, and decrease in glutathione and protein level of superoxide dismutase-1 (SOD-1) and peroxiredoxin-1 (PRDX-1). However, treatment of rats with this extract before and after GR exposure improved antioxidant status and minimized the radiation-induced increase in inflammatory cytokines. Changes occurred in the tissue levels of trace elements, and the protein levels of SOD-1 and PRDX-1 were also modulated by C. longa extract. Overall, C. longa exerted a beneficial radioprotective effect against radiation-induced oxidative stress in male rats by alleviating pathological disorders and modulating antioxidant enzymes.


Asunto(s)
Curcuma/química , Rayos gamma/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Protectores contra Radiación/farmacología , Irradiación Corporal Total/efectos adversos , Animales , Glutatión/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Interleucina-6/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/patología , Masculino , Peroxirredoxinas/metabolismo , Cultivo Primario de Células , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Oligoelementos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Irradiación Corporal Total/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...