Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Med ; 5(6): 57, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23806086

RESUMEN

BACKGROUND: The debate regarding the relative merits of whole genome sequencing (WGS) versus exome sequencing (ES) centers around comparative cost, average depth of coverage for each interrogated base, and their relative efficiency in the identification of medically actionable variants from the myriad of variants identified by each approach. Nevertheless, few genomes have been subjected to both WGS and ES, using multiple next generation sequencing platforms. In addition, no personal genome has been so extensively analyzed using DNA derived from peripheral blood as opposed to DNA from transformed cell lines that may either accumulate mutations during propagation or clonally expand mosaic variants during cell transformation and propagation. METHODS: We investigated a genome that was studied previously by SOLiD chemistry using both ES and WGS, and now perform six independent ES assays (Illumina GAII (x2), Illumina HiSeq (x2), Life Technologies' Personal Genome Machine (PGM) and Proton), and one additional WGS (Illumina HiSeq). RESULTS: We compared the variants identified by the different methods and provide insights into the differences among variants identified between ES runs in the same technology platform and among different sequencing technologies. We resolved the true genotypes of medically actionable variants identified in the proband through orthogonal experimental approaches. Furthermore, ES identified an additional SH3TC2 variant (p.M1?) that likely contributes to the phenotype in the proband. CONCLUSIONS: ES identified additional medically actionable variant calls and helped resolve ambiguous single nucleotide variants (SNV) documenting the power of increased depth of coverage of the captured targeted regions. Comparative analyses of WGS and ES reveal that pseudogenes and segmental duplications may explain some instances of apparent disease mutations in unaffected individuals.

2.
Nat Commun ; 1: 131, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21119644

RESUMEN

Accurately determining the distribution of rare variants is an important goal of human genetics, but resequencing of a sample large enough for this purpose has been unfeasible until now. Here, we applied Sanger sequencing of genomic PCR amplicons to resequence the diabetes-associated genes KCNJ11 and HHEX in 13,715 people (10,422 European Americans and 3,293 African Americans) and validated amplicons potentially harbouring rare variants using 454 pyrosequencing. We observed far more variation (expected variant-site count ∼578) than would have been predicted on the basis of earlier surveys, which could only capture the distribution of common variants. By comparison with earlier estimates based on common variants, our model shows a clear genetic signal of accelerating population growth, suggesting that humanity harbours a myriad of rare, deleterious variants, and that disease risk and the burden of disease in contemporary populations may be heavily influenced by the distribution of rare variants.

3.
Nature ; 455(7216): 1069-75, 2008 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-18948947

RESUMEN

Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.


Asunto(s)
Adenocarcinoma Bronquioloalveolar/genética , Neoplasias Pulmonares/genética , Mutación/genética , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Masculino , Proto-Oncogenes/genética
4.
BMC Microbiol ; 7: 99, 2007 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-17986343

RESUMEN

BACKGROUND: Community acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear. RESULTS: We sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Children's Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified. CONCLUSION: USA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.


Asunto(s)
Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/genética , Adolescente , Antibacterianos/farmacología , Secuencia de Bases , Islas Genómicas/genética , Humanos , Hidrolasas/genética , Resistencia a la Meticilina , Epidemiología Molecular , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Plásmidos/genética , Polimorfismo Genético , Staphylococcus aureus/efectos de los fármacos , Estados Unidos/epidemiología
5.
Science ; 316(5822): 222-34, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17431167

RESUMEN

The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.


Asunto(s)
Evolución Molecular , Genoma , Macaca mulatta/genética , Animales , Investigación Biomédica , Femenino , Duplicación de Gen , Reordenamiento Génico , Enfermedades Genéticas Congénitas , Variación Genética , Humanos , Masculino , Familia de Multigenes , Mutación , Pan troglodytes/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
6.
Nature ; 440(7088): 1194-8, 2006 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-16641997

RESUMEN

After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chromosomes. Chromosome 3 comprises just four contigs, one of which currently represents the longest unbroken stretch of finished DNA sequence known so far. The chromosome is remarkable in having the lowest rate of segmental duplication in the genome. It also includes a chemokine receptor gene cluster as well as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric inversion that occurred some time after the split of Homininae from Ponginae, and propose an evolutionary history of the inversion.


Asunto(s)
Cromosomas Humanos Par 3/genética , Animales , Secuencia de Bases , Rotura Cromosómica/genética , Inversión Cromosómica/genética , Mapeo Contig , Islas de CpG/genética , ADN Complementario/genética , Evolución Molecular , Etiquetas de Secuencia Expresada , Proyecto Genoma Humano , Humanos , Macaca mulatta/genética , Datos de Secuencia Molecular , Pan troglodytes/genética , Análisis de Secuencia de ADN , Sintenía/genética
7.
Nature ; 440(7082): 346-51, 2006 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-16541075

RESUMEN

Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.


Asunto(s)
Cromosomas Humanos Par 12/genética , Animales , Composición de Base , Islas de CpG/genética , Evolución Molecular , Etiquetas de Secuencia Expresada , Genes/genética , Humanos , Desequilibrio de Ligamiento/genética , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Pan troglodytes/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia/genética , Elementos de Nucleótido Esparcido Corto/genética , Sintenía/genética
8.
J Bacteriol ; 186(17): 5842-55, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15317790

RESUMEN

Rickettsia typhi, the causative agent of murine typhus, is an obligate intracellular bacterium with a life cycle involving both vertebrate and invertebrate hosts. Here we present the complete genome sequence of R. typhi (1,111,496 bp) and compare it to the two published rickettsial genome sequences: R. prowazekii and R. conorii. We identified 877 genes in R. typhi encoding 3 rRNAs, 33 tRNAs, 3 noncoding RNAs, and 838 proteins, 3 of which are frameshifts. In addition, we discovered more than 40 pseudogenes, including the entire cytochrome c oxidase system. The three rickettsial genomes share 775 genes: 23 are found only in R. prowazekii and R. typhi, 15 are found only in R. conorii and R. typhi, and 24 are unique to R. typhi. Although most of the genes are colinear, there is a 35-kb inversion in gene order, which is close to the replication terminus, in R. typhi, compared to R. prowazekii and R. conorii. In addition, we found a 124-kb R. typhi-specific inversion, starting 19 kb from the origin of replication, compared to R. prowazekii and R. conorii. Inversions in this region are also seen in the unpublished genome sequences of R. sibirica and R. rickettsii, indicating that this region is a hot spot for rearrangements. Genome comparisons also revealed a 12-kb insertion in the R. prowazekii genome, relative to R. typhi and R. conorii, which appears to have occurred after the typhus (R. prowazekii and R. typhi) and spotted fever (R. conorii) groups diverged. The three-way comparison allowed further in silico analysis of the SpoT split genes, leading us to propose that the stringent response system is still functional in these rickettsiae.


Asunto(s)
Genoma Bacteriano , Rickettsia typhi/genética , Análisis de Secuencia de ADN , Inversión Cromosómica , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , Complejo IV de Transporte de Electrones/genética , Sistema de Lectura Ribosómico , Regulación Bacteriana de la Expresión Génica , Reordenamiento Génico , Genes Bacterianos , Genes de ARNr , Genómica , Datos de Secuencia Molecular , Seudogenes , ARN de Transferencia/genética , ARN no Traducido/genética , Rickettsia/genética , Rickettsia conorii/genética , Homología de Secuencia , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...