Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 18(1): 155, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33121486

RESUMEN

BACKGROUND: CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. RESULTS: We found that CBPKIX/KIX mice were impaired in long-term memory, but not learning acquisition or short-term memory for the Morris water maze. Using an unbiased analysis of gene expression in the dorsal hippocampus after training in the Morris water maze or contextual fear conditioning, we discovered dysregulation of CREB, CLOCK, and BMAL1 target genes and downregulation of circadian genes in CBPKIX/KIX mice. Given our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity and phase resetting in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark. Interestingly, CBPKIX/KIX mice displayed phase delays and advances in response to photic stimulation comparable to wildtype littermates. Thus, this work delineates site-specific regulation of the circadian clock by a multi-domain protein. CONCLUSIONS: These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms.


Asunto(s)
Proteína de Unión a CREB/genética , Ritmo Circadiano/genética , Memoria a Largo Plazo , Dominios Proteicos , Animales , Proteína de Unión a CREB/química , Proteína de Unión a CREB/metabolismo , Femenino , Masculino , Ratones
2.
JCI Insight ; 5(5)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32069266

RESUMEN

Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of 2 classes of regulatory complexes: permissive coactivators and silencing corepressors. Much work has focused on coactivator complexes, but little is known about the corepressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the corepressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the postsynaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the metabotropic glutamate receptor 1α (mGluR1α) and mGluR5 dependence of long-term potentiation, and increases activation of ERK in the hippocampus after learning. Our studies define a critical role for corepressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.


Asunto(s)
Hipocampo/fisiología , Proteínas de Andamiaje Homer/metabolismo , Plasticidad Neuronal/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Transducción de Señal/fisiología , Complejo Correpresor Histona Desacetilasa y Sin3/fisiología , Animales , Hipocampo/metabolismo , Ratones , Ratones Mutantes , Neuronas/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética
3.
Neuropsychopharmacology ; 42(6): 1243-1253, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27834392

RESUMEN

Nr4a nuclear receptors contribute to long-term memory formation and are required for long-term memory enhancement by a class of broad-acting drugs known as histone deacetylase (HDAC) inhibitors. Understanding the molecular mechanisms that regulate these genes and identifying ways to increase their activity may provide novel therapeutic approaches for ameliorating cognitive dysfunction. In the present study, we find that Nr4a gene expression after learning requires the cAMP-response element binding (CREB) interaction domain of the histone acetyltransferase CREB-binding protein (CBP). These gene expression deficits emerge at a time after learning marked by promoter histone acetylation in wild-type mice. Further, mutation of the CREB-CBP interaction domain reduces Nr4a promoter acetylation after learning. As memory enhancement by HDAC inhibitors requires CREB-CBP interaction and Nr4a gene function, these data support the notion that the balance of histone acetylation at the Nr4a promoters is critical for memory formation. NR4A ligands have recently been described, but the effect of these drugs on synaptic plasticity or memory has not been investigated. We find that the 'C-DIM' NR4A ligands, para-phenyl substituted di-indolylmethane compounds, enhance long-term contextual fear memory and increase the duration of long-term potentiation (LTP), a form of hippocampal synaptic plasticity. LTP enhancement by these drugs is eliminated in mice expressing a dominant negative form of NR4A and attenuated in mice with mutation of the CREB-CBP interaction domain. These data define the molecular connection between histone acetylation and Nr4a gene expression after learning. In addition, they suggest that NR4A-activating C-DIM compounds may serve as a potent and selective means to enhance memory and synaptic plasticity.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipocampo/efectos de los fármacos , Indoles/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/efectos de los fármacos , Acetilación/efectos de los fármacos , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
Neurobiol Learn Mem ; 116: 90-95, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25242102

RESUMEN

Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning.


Asunto(s)
Condicionamiento Clásico/fisiología , Miedo/fisiología , Hipocampo/metabolismo , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Transcripción Genética , Animales , Regulación de la Expresión Génica , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
5.
J Clin Invest ; 122(10): 3593-602, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22996661

RESUMEN

The formation of a long-lasting memory requires a transcription-dependent consolidation period that converts a short-term memory into a long-term memory. Nuclear receptors compose a class of transcription factors that regulate diverse biological processes, and several nuclear receptors have been implicated in memory formation. Here, we examined the potential contribution of nuclear receptors to memory consolidation by measuring the expression of all 49 murine nuclear receptors after learning. We identified 13 nuclear receptors with increased expression after learning, including all 3 members of the Nr4a subfamily. These CREB-regulated Nr4a genes encode ligand-independent "orphan" nuclear receptors. We found that blocking NR4A activity in memory-supporting brain regions impaired long-term memory but did not impact short-term memory in mice. Further, expression of Nr4a genes increased following the memory-enhancing effects of histone deacetylase (HDAC) inhibitors. Blocking NR4A signaling interfered with the ability of HDAC inhibitors to enhance memory. These results demonstrate that the Nr4a gene family contributes to memory formation and is a promising target for improving cognitive function.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/fisiología , Nootrópicos/farmacología , Receptores Nucleares Huérfanos/fisiología , Factores de Transcripción/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Electrochoque , Miedo/fisiología , Reacción Cataléptica de Congelación/efectos de los fármacos , Reacción Cataléptica de Congelación/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Genes Dominantes , Hipocampo/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/genética , Trastornos de la Memoria/prevención & control , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Nootrópicos/uso terapéutico , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/deficiencia , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/fisiología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/fisiología , Receptores Nucleares Huérfanos/biosíntesis , Receptores Nucleares Huérfanos/genética , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Factores de Transcripción/agonistas
6.
Learn Mem ; 18(6): 367-70, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21576516

RESUMEN

Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance long-term memory have focused on the fear-conditioning task using broad-spectrum HDAC inhibitors. We have found that post-training intrahippocampal administration of the broad-spectrum HDAC inhibitor trichostatin A (TSA) or the class I HDAC-selective inhibitor MS275 enhances long-term object-location memory, supporting a role for class I HDACs in the enhancement of hippocampus-dependent memory induced by HDAC inhibition.


Asunto(s)
Conducta Exploratoria/efectos de los fármacos , Hipocampo/enzimología , Histona Desacetilasa 1/metabolismo , Memoria/efectos de los fármacos , Animales , Conducta Animal , Benzamidas/farmacología , Señales (Psicología) , Agonistas de Receptores de GABA-A/farmacología , Hipocampo/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Muscimol/farmacología , Estimulación Luminosa/métodos , Piridinas/farmacología , Factores de Tiempo
7.
Learn Mem ; 18(3): 161-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21345974

RESUMEN

Histone acetylation plays a critical role during long-term memory formation. Several studies have demonstrated that the histone acetyltransferase (HAT) CBP is required during long-term memory formation, but the involvement of other HAT proteins has not been extensively investigated. The HATs CBP and p300 have at least 400 described interacting proteins including transcription factors known to play a role in long-term memory formation. Thus, CBP and p300 constitute likely candidates for transcriptional coactivators in memory formation. In this study, we took a loss-of-function approach to evaluate the role of p300 in long-term memory formation. We used conditional knock-out mice in which the deletion of p300 is restricted to the postnatal phase and to subregions of the forebrain. We found that p300 is required for the formation of long-term recognition memory and long-term contextual fear memory in the CA1 area of the hippocampus and cortical areas.


Asunto(s)
Encéfalo/fisiología , Memoria a Largo Plazo/fisiología , Factores de Transcripción p300-CBP/metabolismo , Animales , Western Blotting , Condicionamiento Clásico/fisiología , Miedo/fisiología , Inmunohistoquímica , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Noqueados , Factores de Transcripción p300-CBP/deficiencia , Factores de Transcripción p300-CBP/genética
8.
Learn Mem ; 17(3): 155-60, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20189960

RESUMEN

Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory consolidation including acquisition, retrieval, and performance. To overcome this limitation, we used an intrahippocampal injection of the GABA agonist muscimol to reversibly inactivate the hippocampus immediately after training mice in two versions of an object recognition task. We found that the inactivation of the dorsal hippocampus after training impairs object-place recognition memory but enhances novel object recognition (NOR) memory. However, inactivation of the dorsal hippocampus after repeated exposure to the training context did not affect object recognition memory. Our findings suggest that object recognition memory formation does not require the hippocampus and, moreover, that activity in the hippocampus can interfere with the consolidation of object recognition memory when object information encoding occurs in an unfamiliar environment.


Asunto(s)
Conducta Exploratoria/fisiología , Hipocampo/fisiología , Reconocimiento Visual de Modelos , Reconocimiento en Psicología/fisiología , Enseñanza , Análisis de Varianza , Animales , Conducta Exploratoria/efectos de los fármacos , Agonistas del GABA/farmacología , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Muscimol/farmacología , Estimulación Luminosa/métodos , Reconocimiento en Psicología/efectos de los fármacos , Factores de Tiempo
9.
Mutat Res ; 640(1-2): 89-96, 2008 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-18242644

RESUMEN

Although microsatellite mutation rates generally increase with increasing length of the repeat tract, interruptions in a microsatellite may stabilize it. We have performed a direct analysis of the effect of microsatellite interruptions on mutation rate and spectrum in cultured mammalian cells. Two mononucleotide sequences (G(17) and A(17)) and a dinucleotide [(CA)(17)] were compared with interrupted repeats of the same size and with sequences of 8 repeat units. MMR-deficient (MMR(-)) cells were used for these studies to eliminate effects of this repair process. Mutation rates were determined by fluctuation analysis on cells containing a microsatellite sequence at the 5' end of an antibiotic-resistance gene; the vector carrying this sequence was integrated in the genome of the cells. In general, interrupted sequences had lower mutation rates than perfect ones of the same size, but the magnitude of the difference was dependent upon the sequence of the interrupting base(s). Some interrupted repeats had mutation rates that were lower than those of perfect sequences of the same length but similar to those of half the length. This suggests that interrupting bases effectively divide microsatellites into smaller repeat runs with mutational characteristics different from those of the corresponding full-length microsatellite. We conclude that interruptions decrease microsatellite mutation rate and influence the spectrum of frameshift mutations. The sequence of the interrupting base(s) determines the magnitude of the effect on mutation rate.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Repeticiones de Microsatélite , Mutación , Secuencia de Bases , Línea Celular Tumoral , Mutación del Sistema de Lectura , Frecuencia de los Genes , Humanos , Inestabilidad de Microsatélites , Transfección
10.
J Neurosci ; 27(23): 6128-40, 2007 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-17553985

RESUMEN

Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance both memory and synaptic plasticity. The current model for the action of HDAC inhibitors assumes that they alter gene expression globally and thus affect memory processes in a nonspecific manner. Here, we show that the enhancement of hippocampus-dependent memory and hippocampal synaptic plasticity by HDAC inhibitors is mediated by the transcription factor cAMP response element-binding protein (CREB) and the recruitment of the transcriptional coactivator and histone acetyltransferase CREB-binding protein (CBP) via the CREB-binding domain of CBP. Furthermore, we show that the HDAC inhibitor trichostatin A does not globally alter gene expression but instead increases the expression of specific genes during memory consolidation. Our results suggest that HDAC inhibitors enhance memory processes by the activation of key genes regulated by the CREB:CBP transcriptional complex.


Asunto(s)
Proteína de Unión a CREB/biosíntesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , Inhibidores de Histona Desacetilasas , Memoria/fisiología , Plasticidad Neuronal/fisiología , Activación Transcripcional/fisiología , Animales , Proteína de Unión a CREB/genética , Inhibidores Enzimáticos/farmacología , Femenino , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/enzimología , Activación Transcripcional/efectos de los fármacos
12.
Proc Natl Acad Sci U S A ; 102(24): 8639-43, 2005 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-15932942

RESUMEN

Evolutionary studies have suggested that mutation rates vary significantly at different positions in the eukaryotic genome. The mechanism that is responsible for this context-dependence of mutation rates is not understood. We demonstrate experimentally that frameshift mutation rates in yeast microsatellites depend on the genomic context and that this variation primarily reflects the context-dependence of the efficiency of DNA mismatch repair. We measured the stability of a 16.5-repeat polyGT tract by using a reporter gene (URA3-GT) in which the microsatellite was inserted in-frame into the yeast URA3 gene. We constructed 10 isogenic yeast strains with the reporter gene at different locations in the genome. Rates of frameshift mutations that abolished the correct reading frame of this gene were determined by fluctuation analysis. A 16-fold difference was found among these strains. We made mismatch-repair-deficient (msh2) derivatives of six of the strains. Mutation rates were elevated for all of these strains, but the differences in rates among the strains were substantially reduced. The simplest interpretation of this result is that the efficiency of DNA mismatch repair varies in different regions of the genome, perhaps reflecting some aspect of chromosome structure.


Asunto(s)
Disparidad de Par Base/genética , Reparación del ADN/fisiología , Genoma Fúngico , Saccharomyces cerevisiae/genética , Secuencia de Bases , Cartilla de ADN , Mutación del Sistema de Lectura/genética , Proteínas Fúngicas/genética , Genes Reporteros/genética , Repeticiones de Microsatélite/genética , Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...