Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 693, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828067

RESUMEN

This article provides a combined geospatial artificial intelligence-machine learning, geoAI-ML, agent-based, data-driven, technology-rich, bottom-up approach and datasets for capturing the human dimension in climate-energy-economy models. Seven stages were required to conduct this study and build thirteen datasets to characterise and parametrise geospatial agents in 28 regions, globally. Fundamentally, the methodology starts collecting and handling data, ending with the application of the ModUlar energy system Simulation Environment (MUSE), ResidentiAl Spatially-resolved and temporal-explicit Agents (RASA) model. MUSE-RASA uses AI-ML-based geospatial big data analytics to define eight scenarios to explore long-term transition pathways towards net-zero emission targets by mid-century. The framework and datasets are key for climate-energy-economy models considering consumer behaviour and bounded rationality in more realistic decision-making processes beyond traditional approaches. This approach defines energy economic agents as heterogeneous and diverse entities that evolve in space and time, making decisions under exogenous constraints. This framework is based on the Theory of Bounded Rationality, the Theory of Real Competition, the theoretical foundations of agent-based modelling and the progress on the combination of GIS-ABM.

2.
Nat Commun ; 14(1): 5117, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612287

RESUMEN

Understanding how 1.5 °C pathways could adjust in light of new adverse information, such as a reduced 1.5 °C carbon budget, or slower-than-expected low-carbon technology deployment, is critical for planning resilient pathways. We use an integrated assessment model to explore potential pathway adjustments starting in 2025 and 2030, following the arrival of new information. The 1.5 °C target remains achievable in the model, in light of some adverse information, provided a broad portfolio of technologies and measures is still available. If multiple pieces of adverse information arrive simultaneously, average annual emissions reductions near 3 GtCO2/yr for the first five years following the pathway adjustment, compared to 2 GtCO2/yr in 2020 when the Covid-19 pandemic began. Moreover, in these scenarios of multiple simultaneous adverse information, by 2050 mitigation costs are 4-5 times as high as a no adverse information scenario, highlighting the criticality of developing a wide range of mitigation options, including energy demand reduction options.

3.
Sci Total Environ ; 872: 162222, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36796684

RESUMEN

Methane emissions from natural gas are of ever-increasing importance as we struggle to reach Paris climate targets. Locating and measuring emissions from natural gas can be particularly difficult as they are often widely distributed across supply chains. Satellites are increasingly used to measure these emissions, with some such as TROPOMI giving daily coverage worldwide, making locating and quantifying these emissions easier. However, there is little understanding of the real-world detection limits of TROPOMI, which can cause emissions to go undetected or be misattributed. This paper uses TROPOMI and meteorological data to calculate, and create a map of, the minimum detection limits of the TROPOMI satellite sensor across North America for different campaign lengths. We then compared these to emission inventories to determine the quantity of emissions that can be captured by TROPOMI. We find that minimum detection limits vary from 500-8800 kg/h/pixel in a single overpass to 50-1200 kg/h/pixel for a yearlong campaign. This leads to 0.04 % of a year's emissions being captured in a single (day) measurement to 14.4 % in a 1-year measurement campaign. Assuming gas sites contain super-emitters, emissions of between 4.5 % - 10.1 % from a single measurement and 35.6 % - 41.1 % for a yearlong campaign are captured.

4.
iScience ; 25(3): 103905, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35252811

RESUMEN

Decarbonizing the building sector depends on choices made at the household level, which are heterogeneous. Agent-based models are tools used to describe heterogeneous choices but require data-intensive calibration. This study analyzes a novel, cross-country European household-level survey, including sociodemographic characteristics, energy-saving habits, energy-saving investments, and metered household electricity consumption, to enhance the empirical grounding of an agent-based residential energy choice model. Applying cluster analysis to the data shows that energy consumption is not straightforwardly explained by sociodemographic classes, preferences, or attitudes, but some patterns emerge. Income consistently has the largest effect on demand, dwelling efficiency, and energy-saving investments, and the potential to improve a dwellings' energy use affects the efficiency investments made. Including the various sources of heterogeneity found to characterize the model agents affects the timing and speed of the transition. The results reinforce the need for grounding agent-based models in empirical data, to better understand energy transition dynamics.

5.
Sci Total Environ ; 830: 154624, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35307429

RESUMEN

Future energy systems could rely on hydrogen (H2) to achieve decarbonisation and net-zero goals. In a similar energy landscape to natural gas, H2 emissions occur along the supply chain. It has been studied how current gas infrastructure can support H2, but there is little known about how H2 emissions affect global warming as an indirect greenhouse gas. In this work, we have estimated for the first time the potential emission profiles (g CO2eq/MJ H2,HHV) of H2 supply chains, and found that the emission rates of H2 from H2 supply chains and methane from natural gas supply are comparable, but the impact on global warming is much lower based on current estimates. This study also demonstrates the critical importance of establishing mobile H2 emission monitoring and reducing the uncertainty of short-lived H2 climate forcing so as to clearly address H2 emissions for net-zero strategies.


Asunto(s)
Calentamiento Global , Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Efecto Invernadero , Hidrógeno , Metano/análisis , Gas Natural/análisis
6.
Sci Total Environ ; 793: 148549, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34174618

RESUMEN

Recent calls to do climate policy research with, rather than for, stakeholders have been answered in non-modelling science. Notwithstanding progress in modelling literature, however, very little of the scenario space traces back to what stakeholders are ultimately concerned about. With a suite of eleven integrated assessment, energy system and sectoral models, we carry out a model inter-comparison for the EU, the scenario logic and research questions of which have been formulated based on stakeholders' concerns. The output of this process is a scenario framework exploring where the region is headed rather than how to achieve its goals, extrapolating its current policy efforts into the future. We find that Europe is currently on track to overperforming its pre-2020 40% target yet far from its newest ambition of 55% emissions cuts by 2030, as well as looking at a 1.0-2.35 GtCO2 emissions range in 2050. Aside from the importance of transport electrification, deployment levels of carbon capture and storage are found intertwined with deeper emissions cuts and with hydrogen diffusion, with most hydrogen produced post-2040 being blue. Finally, the multi-model exercise has highlighted benefits from deeper decarbonisation in terms of energy security and jobs, and moderate to high renewables-dominated investment needs.


Asunto(s)
Cambio Climático , Políticas , Carbono , Dióxido de Carbono , Clima
7.
Sci Total Environ ; 783: 146861, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33872899

RESUMEN

Harmonisation sets the ground to a solid inter-comparison of integrated assessment models. A clear and transparent harmonisation process promotes a consistent interpretation of the modelling outcomes divergences and, reducing the model variance, is instrumental to the use of integrated assessment models to support policy decision-making. Despite its crucial role for climate economic policies, the definition of a comprehensive harmonisation methodology for integrated assessment modelling remains an open challenge for the scientific community. This paper proposes a framework for a harmonisation methodology with the definition of indispensable steps and recommendations to overcome stumbling blocks in order to reduce the variance of the outcomes which depends on controllable modelling assumptions. The harmonisation approach of the PARIS REINFORCE project is presented here to layout such a framework. A decomposition analysis of the harmonisation process is shown through 6 integrated assessment models (GCAM, ICES-XPS, MUSE, E3ME, GEMINI-E3, and TIAM). Results prove the potentials of the proposed framework to reduce the model variance and present a powerful diagnostic tool to feedback on the quality of the harmonisation itself.

8.
J Environ Manage ; 279: 111753, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33338771

RESUMEN

This paper proposes a bottom-up method to estimate the technical capacity of solid oxide fuel cells to be installed in wastewater treatment plants and valorise the biogas obtained from the sludge through an efficient conversion into electricity and heat. The methodology uses stochastic optimisation on 200 biogas profile scenarios generated from industrial data and envisages a Pareto approach for an a posteriori assessment of the optimal number of generation unit for the most representative plant configuration sizes. The method ensures that the dominant role of biogas fluctuation is included in the market potential and guarantees that the utilization factor of the modules remains higher than 70% to justify the investment costs. Results show that the market potential for solid oxide fuel cells across Europe would lead up to 1,300 MW of installed electric capacity in the niche market of wastewater treatment and could initiate a capital and fixed costs reduction which could make the technology comparable with alternative combined heat and power solutions.


Asunto(s)
Biocombustibles , Purificación del Agua , Europa (Continente) , Composición Familiar , Óxidos , Centrales Eléctricas
10.
Appl Energy ; 274: 115295, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32536741

RESUMEN

This paper presents the formulation and application of a novel agent-based integrated assessment approach to model the attributes, objectives and decision-making process of investors in a long-term energy transition in India's iron and steel sector. It takes empirical data from an on-site survey of 108 operating plants in Maharashtra to formulate objectives and decision-making metrics for the agent-based model and simulates possible future portfolio mixes. The studied decision drivers were capital costs, operating costs (including fuel consumption), a combination of capital and operating costs, and net present value. Where investors used a weighted combination of capital cost and operating costs, a natural gas uptake of ~12PJ was obtained and the highest cumulative emissions reduction was obtained, 2 Mt CO2 in the period from 2020 to 2050. Conversely if net present value alone is used, cumulative emissions reduction in the same period was lower, 1.6 Mt CO2, and the cumulative uptake of natural gas was equal to 15PJ. Results show how the differing upfront investment cost of the technology options could cause prevalence of high-carbon fuels, particularly heavy fuel oil, in the final mix. Results also represent the unique heterogeneity of fuel-switching industrial investors with distinct investment goals and limited foresight on costs. The perception of high capital expenditures for decarbonisation represents a significant barrier to the energy transition in industry and should be addressed via effective policy making (e.g. carbon policy/price).

11.
Nat Commun ; 10(1): 3277, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332176

RESUMEN

The feasibility of large-scale biological CO2 removal to achieve stringent climate targets remains unclear. Direct Air Carbon Capture and Storage (DACCS) offers an alternative negative emissions technology (NET) option. Here we conduct the first inter-model comparison on the role of DACCS in 1.5 and 2 °C scenarios, under a variety of techno-economic assumptions. Deploying DACCS significantly reduces mitigation costs, and it complements rather than substitutes other NETs. The key factor limiting DACCS deployment is the rate at which it can be scaled up. Our scenarios' average DACCS scale-up rates of 1.5 GtCO2/yr would require considerable sorbent production and up to 300 EJ/yr of energy input by 2100. The risk of assuming that DACCS can be deployed at scale, and finding it to be subsequently unavailable, leads to a global temperature overshoot of up to 0.8 °C. DACCS should therefore be developed and deployed alongside, rather than instead of, other mitigation options.

12.
Sci Total Environ ; 674: 482-493, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31022539

RESUMEN

Using natural gas as a fuel in the road freight sector instead of diesel could cut greenhouse gas and air quality emissions but the switch alone is not enough to meet UK climate targets. A life cycle assessment (LCA) has been conducted comparing natural gas trucks to diesel, biodiesel, dimethyl ether and electric trucks on impacts to climate change, land use change, air quality, human health and resource depletion. This is the first LCA to consider a full suite of environmental impacts and is the first study to estimate what impact natural gas could have on reducing emissions form the UK freight sector. If LNG is used, climate change impacts could be up to 33% lower per km and up to 12% lower per kWh engine output. However, methane emissions will eliminate any benefits if they exceed 1.5-3.5% of throughput for typical fuel consumption. For non-climate impacts, natural gas exhibits lower emissions (11-66%) than diesel for all indicators. Thus, for natural gas climate benefits are modest. However, emissions of CO, methane and particulate matter are over air quality limits set for UK trucks. Of the other options, electric and biodiesel trucks perform best in climate change, but are the worst with respect to land use change (which could have significant impacts on overall climate change benefits), air quality, human toxicity and metals depletion indicators. Natural gas could help reduce the sector's emissions but deeper decarbonization options are required to meet 2030 climate targets, thus the window for beneficial utilisation is short.

13.
Sci Total Environ ; 668: 1242-1258, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31018464

RESUMEN

Greenhouse gases (GHGs) produced by the extraction of natural gas are an important contributor to lifecycle emissions and account for a significant fraction of anthropogenic methane emissions in the USA. The timing as well as the magnitude of these emissions matters, as the short term climate warming impact of methane is up to 120 times that of CO2. This study uses estimates of CO2 and methane emissions associated with different upstream operations to build a deterministic model of GHG emissions from conventional and unconventional gas fields as a function of time. By combining these emissions with a dynamic, techno-economic model of gas supply we assess their potential impact on the value of different types of project and identify stranded resources in various carbon price scenarios. We focus in particular on the effects of different emission metrics for methane, using the global warming potential (GWP) and the global temperature potential (GTP), with both fixed 20-year and 100-year CO2-equivalent values and in a time-dependent way based on a target year for climate stabilisation. We report a strong time dependence of emissions over the lifecycle of a typical field, and find that bringing forward the stabilisation year dramatically increases the importance of the methane contribution to these emissions. Using a commercial database of the remaining reserves of individual projects, we use our model to quantify future emissions resulting from the extraction of current US non-associated reserves. A carbon price of at least 400 USD/tonne CO2 is effective in reducing cumulative GHGs by 30-60%, indicating that decarbonising the upstream component of the natural gas supply chain is achievable using carbon prices similar to those needed to decarbonise the energy system as a whole. Surprisingly, for large carbon prices, the choice of emission metric does not have a significant impact on cumulative emissions.

14.
Environ Sci Process Impacts ; 20(10): 1323-1339, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30255177

RESUMEN

Methane is a more potent greenhouse gas (GHG) than CO2, but it has a shorter atmospheric lifespan, thus its relative climate impact reduces significantly over time. Different GHGs are often conflated into a single metric to compare technologies and supply chains, such as the global warming potential (GWP). However, the use of GWP is criticised, regarding: (1) the need to select a timeframe; (2) its physical basis on radiative forcing; and (3) the fact that it measures the average forcing of a pulse over time rather than a sustained emission at a specific end-point in time. Many alternative metrics have been proposed which tackle different aspects of these limitations and this paper assesses them by their key attributes and limitations, with respect to methane emissions. A case study application of various metrics is produced and recommendations are made for the use of climate metrics for different categories of applications. Across metrics, CO2 equivalences for methane range from 4-199 gCO2eq./gCH4, although most estimates fall between 20 and 80 gCO2eq./gCH4. Therefore the selection of metric and time horizon for technology evaluations is likely to change the rank order of preference, as demonstrated herein with the use of natural gas as a shipping fuel versus alternatives. It is not advisable or conservative to use only a short time horizon, e.g. 20 years, which disregards the long-term impacts of CO2 emissions and is thus detrimental to achieving eventual climate stabilisation. Recommendations are made for the use of metrics in 3 categories of applications. Short-term emissions estimates of facilities or regions should be transparent and use a single metric and include the separated contribution from each GHG. Multi-year technology assessments should use both short and long term static metrics (e.g. GWP) to test robustness of results. Longer term energy assessments or decarbonisation pathways must use both short and long-term metrics and where this has a large impact on results, climate models should be incorporated. Dynamic metrics offer insight into the timing of emissions, but may be of only marginal benefit given uncertainties in methodological assumptions.


Asunto(s)
Calentamiento Global , Efecto Invernadero , Metano , Algoritmos , Dióxido de Carbono , Clima , Gas Natural
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...