Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37444472

RESUMEN

Women with ovarian cancer have limited therapy options, with immunotherapy being unsatisfactory for a large group of patients. Tumor cells spread from the ovary or the fallopian tube into the abdominal cavity, which is commonly accompanied with massive ascites production. The ascites represents a unique peritoneal liquid tumor microenvironment with the presence of both tumor and immune cells, including cytotoxic lymphocytes. We characterized lymphocytes in ascites from patients with high-grade serous ovarian cancer. Our data reveal the presence of NK and CD8+ T lymphocytes expressing CD103 and CD49a, which are markers of tissue residency. Moreover, these cells express high levels of the inhibitory NKG2A receptor, with the highest expression level detected on tissue-resident NK cells. Lymphocytes with these features were also present at the primary tumor site. Functional assays showed that tissue-resident NK cells in ascites are highly responsive towards ovarian tumor cells. Similar results were observed in an in vivo mouse model, in which tissue-resident NK and CD8+ T cells were detected in the peritoneal fluid upon tumor growth. Together, our data reveal the presence of highly functional lymphocyte populations that may be targeted to improve immunotherapy for patients with ovarian cancer.

2.
Front Immunol ; 13: 808227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619712

RESUMEN

Reproductive immunology has moved on from the classical Medawar question of 60 years ago "why doesn't the mother reject the fetus?". Looking beyond fetal-maternal tolerance, modern reproductive immunology focuses on how the maternal immune system supports fetal growth. Maternal uterine natural killer (uNK) cells, in partnership with fetal trophoblast cells, regulate physiological vascular changes in the uterus of pregnant women and mice. These vascular changes are necessary to build the placenta and sustain fetal growth. NK cell functions in the uterus and elsewhere, including anti-viral and anti-tumour immunity mediated mostly by blood NK cells, are modulated by NK cell education, a quantifiable process that determines cellular activation thresholds. This process relies largely on interactions between self-MHC class I molecules and inhibitory NK cell receptors. By getting to know self, the maternal immune system sets up uNK cells to participate to tissue homeostasis in the womb. Placentation can be viewed as a form of natural transplantation unique in vertebrates and this raises the question of how uNK cell education or missing-self recognition affect their function and, ultimately fetal growth. Here, using combinations of MHC-sufficient and -deficient mice, we show that uNK cell education is linked to maternal and not fetal MHC, so that MHC-deficient dams produce more growth-restricted fetuses, even when the fetuses themselves express self-MHC. We also show that, while peripheral NK cells reject bone marrow cells according to the established rules of missing-self recognition, uNK cells educated by maternal MHC do not reject fetuses that miss self-MHC and these fetuses grow to their full potential. While these results are not directly applicable to clinical research, they show that NK education by maternal MHC-I is required for optimal fetal growth.


Asunto(s)
Células Asesinas Naturales , Útero , Animales , Femenino , Desarrollo Fetal , Humanos , Tolerancia Inmunológica , Ratones , Embarazo , Receptores de Células Asesinas Naturales
3.
J Vis Exp ; (176)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34723937

RESUMEN

Described here is a simple method to isolate and phenotype mouse group 1 uterine innate lymphoid cells (g1 uILCs) from individual pregnant uterus by flow cytometry. The protocol describes how to set up time mating to obtain multiple synchronous dams, the mechanical and enzymatic digestion of the pregnant uterus, the staining of single-cell suspensions, and a FACS strategy to phenotype and discriminate g1 uILCs. Although this method inevitably loses the spatial information of cellular distribution within the tissue, the protocol has been successfully applied to determine uILC heterogeneity, their response to maternal and foetal factors affecting pregnancy, their gene expression profile, and their functions.


Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Femenino , Citometría de Flujo , Ratones , Fenotipo , Embarazo , Útero
4.
Immunity ; 54(6): 1231-1244.e4, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33887202

RESUMEN

The conserved CD94/NKG2A inhibitory receptor is expressed by nearly all human and ∼50% of mouse uterine natural killer (uNK) cells. Binding human HLA-E and mouse Qa-1, NKG2A drives NK cell education, a process of unknown physiological importance influenced by HLA-B alleles. Here, we show that NKG2A genetic ablation in dams mated with wild-type males caused suboptimal maternal vascular responses in pregnancy, accompanied by perturbed placental gene expression, reduced fetal weight, greater rates of smaller fetuses with asymmetric growth, and abnormal brain development. These are features of the human syndrome pre-eclampsia. In a genome-wide association study of 7,219 pre-eclampsia cases, we found a 7% greater relative risk associated with the maternal HLA-B allele that does not favor NKG2A education. These results show that the maternal HLA-B→HLA-E→NKG2A pathway contributes to healthy pregnancy and may have repercussions on offspring health, thus establishing the physiological relevance for NK cell education. VIDEO ABSTRACT.


Asunto(s)
Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Subfamília D de Receptores Similares a Lectina de las Células NK/inmunología , Útero/inmunología , Animales , Femenino , Estudio de Asociación del Genoma Completo/métodos , Antígenos HLA/inmunología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Placenta/inmunología , Embarazo , Resultado del Embarazo
5.
Front Immunol ; 9: 2523, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30443254

RESUMEN

Fetal growth restriction (FGR) causes a wide variety of defects in the neonate which can lead to increased risk of heart disease, diabetes, anxiety and other disorders later in life. However, the effect of FGR on the immune system, is poorly understood. We used a well-characterized mouse model of FGR in which placental Igf-2 production is lost due to deletion of the placental specific Igf-2 P0 promotor. The thymi in such animals were reduced in mass with a ~70% reduction in cellularity. We used single cell RNA sequencing (Drop-Seq) to analyze 7,264 thymus cells collected at postnatal day 6. We identified considerable heterogeneity among the Cd8/Cd4 double positive cells with one subcluster showing marked upregulation of transcripts encoding a sub-set of proteins that contribute to the surface of the ribosome. The cells from the FGR animals were underrepresented in this cluster. Furthermore, the distribution of cells from the FGR animals was skewed with a higher proportion of immature double negative cells and fewer mature T-cells. Cell cycle regulator transcripts also varied across clusters. The T-cell deficit in FGR mice persisted into adulthood, even when body and organ weights approached normal levels due to catch-up growth. This finding complements the altered immunity found in growth restricted human infants. This reduction in T-cellularity may have implications for adult immunity, adding to the list of adult conditions in which the in utero environment is a contributory factor.


Asunto(s)
Retardo del Crecimiento Fetal/inmunología , Timo/inmunología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Factor II del Crecimiento Similar a la Insulina/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos/inmunología , Placenta/inmunología , Embarazo , Análisis de la Célula Individual/métodos
6.
Nat Commun ; 9(1): 4492, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30374017

RESUMEN

Determining the function of uterine lymphocytes is challenging because of the dynamic changes in response to sex hormones and, during pregnancy, to the invading foetal trophoblast cells. Here we provide a genome-wide transcriptome atlas of mouse uterine group 1 innate lymphoid cells (ILCs) at mid-gestation. Tissue-resident Eomes+CD49a+ NK cells (trNK), which resemble human uterine NK cells, are most abundant during early pregnancy, and have gene signatures associated with TGF-ß responses and interactions with trophoblast, epithelial, endothelial, smooth muscle cells, leucocytes and extracellular matrix. Conventional NK cells expand late in gestation and may engage in crosstalk with trNK cells involving IL-18 and IFN-γ. Eomes-CD49a+ ILC1s dominate before puberty, and specifically expand in second pregnancies when the expression of the memory cell marker CXCR6 is upregulated. These results identify trNK cells as the cellular hub of uterine group 1 ILCs, and mark CXCR6+ ILC1s as potential memory cells of pregnancy.


Asunto(s)
Inmunidad Innata , Linfocitos/citología , Linfocitos/metabolismo , Útero/citología , Animales , Femenino , Perfilación de la Expresión Génica , Genoma , Humanos , Memoria Inmunológica , Interleucinas/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Embarazo , Receptores CXCR6/metabolismo , Proteínas de Dominio T Box/metabolismo , Transcriptoma/genética , Interleucina-22
7.
Front Immunol ; 7: 43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925058

RESUMEN

Uterine NK cells are innate lymphoid cells (ILC) that populate the uterus and expand during pregnancy, regulating placental development and fetal growth in humans and mice. We have recently characterized the composition of uterine ILCs (uILCs), some of which require the transcription factor NFIL3, but the extent to which NFIL3-dependent cells support successful reproduction in mice is unknown. By mating Nfil3 (-/-) females with wild-type males, here we show the effects of NFIL3 deficiency in maternal cells on both the changes in uILCs during pregnancy and the downstream consequences on reproduction. Despite the presence of CD49a(+)Eomes(-) uILC1s and the considerable expansion of residual CD49a(+)Eomes(+) tissue-resident NK cells and uILC3s in pregnant Nfil3 (-/-) mice, we found incomplete remodeling of uterine arteries and decidua, placental defects, and fetal growth restriction in litters of normal size. These results show that maternal NFIL3 mediates non-redundant functions in mouse reproduction.

8.
Cell Rep ; 13(12): 2817-28, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26711346

RESUMEN

Maternal immune cells are an integral part of reproduction, but how they might cause pregnancy complications remains elusive. Macrophages and their dual function in inflammation and tissue repair are thought to play key yet undefined roles. Altered perinatal growth underpins adult morbidity, and natural killer (NK) cells may sustain fetal growth by establishing the placental blood supply. Using a mouse model of genetic inactivation of PI3K p110δ, a key intracellular signaling molecule in leukocytes, we show that p110δ regulates macrophage dynamics and NK-cell-mediated arterial remodeling. The uterus of dams with inactive p110δ had decreased IFN-γ and MHC class II(low) macrophages but enhanced IL-6. Poor vascular remodeling and a pro-inflammatory uterine milieu resulted in fetal death or growth retardation. Our results provide one mechanism that explains how imbalanced adaptations of maternal innate immune cells to gestation affect offspring well-being with consequence perinatally and possibly into adulthood.


Asunto(s)
Muerte Fetal , Células Asesinas Naturales/enzimología , Células Asesinas Naturales/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Animales , Fosfatidilinositol 3-Quinasa Clase I , Citocinas/biosíntesis , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/enzimología , Retardo del Crecimiento Fetal/inmunología , Silenciador del Gen , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Macrófagos/inmunología , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Transducción de Señal , Útero/inmunología
9.
J Immunol ; 195(8): 3937-45, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371244

RESUMEN

Innate lymphoid cells (ILCs), including NK cells, contribute to barrier immunity and tissue homeostasis. In addition to the role of uterine NK cells in placentation and fetal growth, other uterine ILCs (uILCs) are likely to play roles in uterine physiology and pathology. In this article, we report on the composition of uILCs in the endometrium during the luteal phase and in the decidua during early pregnancy. Whereas nonkiller uILC1s and uILC2s are barely detectable in mouse and not detected in humans, a sizeable population of uILC3s is found in human endometrium and decidua, which are mostly NCR(+) and partially overlap with previously described IL-22-producing uterine NK cells. Development of mouse uILC3 is Nfil3 independent, suggesting unique features of uILCs. Indeed, although the cytokine production profile of mouse uILCs recapitulates that described in other tissues, IL-5, IL-17, and IL-22 are constitutively produced by uILC2s and uILC3s. This study lays the foundation to understand how ILCs function in the specialized uterine mucosa, both in tissue homeostasis and barrier immunity and during pregnancy.


Asunto(s)
Citocinas/inmunología , Endometrio/inmunología , Linfocitos/inmunología , Embarazo/inmunología , Adulto , Animales , Endometrio/citología , Femenino , Humanos , Linfocitos/citología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...