Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Zool A Ecol Integr Physiol ; 339(8): 706-722, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37306263

RESUMEN

Biomechanics research often revolves around understanding traits impacting suction feeding performance in fishes, using freshwater ray-finned sunfishes (Family Centrarchidae) as models. However, simultaneous feeding and locomotion kinematics during prey capture are not recorded for many species and there is less information on how these kinematics vary within a species and within individuals. To (1) add to existing data on the prey capture kinematics of centrarchids, (2) assess variation in a species both within and across individuals, and (3) compare morphology and prey capture kinematics of well-sampled centrarchids, we filmed five redbreast sunfish (Lepomis auritus) at 500 fps-1 approaching and striking non-evasive prey. Redbreast approach prey at ~30 cm s-1 and use approximately 70% of their maximum gape size. Traits related to feeding are more repeatable than traits related to locomotion. However, the Accuracy Index (AI) was consistent across individuals (AI = 0.76 ± 0.07). Functionally, redbreast sunfish are more similar to bluegill sunfish but morphologically they fall in the intermediate morphospace alongside green sunfish when compared with other centrarchids. These data show that whole organism outcomes (AI) are similar despite variation present both within and across individuals and demonstrate the importance of considering both interspecific and intraspecific differences in the functional diversity of ecologically and evolutionarily important behaviors such as prey capture.


Asunto(s)
Perciformes , Conducta Predatoria , Animales , Fenómenos Biomecánicos , Conducta Predatoria/fisiología , Perciformes/fisiología , Peces , Conducta Alimentaria/fisiología
2.
Integr Comp Biol ; 63(3): 796-807, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37336599

RESUMEN

Armor is a multipurpose set of structures that has evolved independently at least 30 times in fishes. In addition to providing protection, armor can manipulate flow, increase camouflage, and be sexually dimorphic. There are potential tradeoffs in armor function: increased impact resistance may come at the cost of maneuvering ability; and ornate armor may offer visual or protective advantages, but could incur excess drag. Pacific spiny lumpsuckers (Eumicrotremus orbis) are covered in rows of odontic, cone-shaped armor whorls, protecting the fish from wave driven impacts and the threat of predation. We are interested in measuring the effects of lumpsucker armor on the hydrodynamic forces on the fish. Bigger lumpsuckers have larger and more complex armor, which may incur a greater hydrodynamic cost. In addition to their protective armor, lumpsuckers have evolved a ventral adhesive disc, allowing them to remain stationary in their environment. We hypothesize a tradeoff between the armor and adhesion: little fish prioritize suction, while big fish prioritize protection. Using micro-CT, we compared armor volume to disc area over lumpsucker development and built 3D models to measure changes in drag over ontogeny. We found that drag and drag coefficients decrease with greater armor coverage and vary consistently with orientation. Adhesive disc area is isometric but safety factor increases with size, allowing larger fish to remain attached in higher flows than smaller fish.


Asunto(s)
Peces , Perciformes , Animales , Hidrodinámica , Conducta Predatoria
3.
J Exp Biol ; 225(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217876

RESUMEN

Rapid turning and swimming contribute to ecologically important behaviors in fishes such as predator avoidance, prey capture, mating and the navigation of complex environments. For riverine species, such as knifefishes, turning behaviors may also be important for navigating locomotive perturbations caused by turbulent flows. Most research on fish maneuvering focuses on fish with traditional fin and body morphologies, which primarily use body bending and the pectoral fins during turning. However, it is uncertain how fishes with uncommon morphologies are able to achieve sudden and controllable turns. Here, we studied the turning performance and the turning hydrodynamics of the black ghost knifefish (Apteronotus albifrons, N=6) which has an atypical elongated ribbon fin. Fish were filmed while swimming forward at ∼2 body lengths s-1 and feeding from a fixed feeder (control) and an oscillating feeder (75 Hz) at two different amplitudes. 3D kinematic analysis of the body revealed the highest pitch angles and lowest body bending coefficients during steady swimming. Low pitch angle, high maximum yaw angles and large body bending coefficients were characteristic of small and large turns. Asynchrony in pectoral fin use was low during turning; however, ribbon fin wavelength, frequency and wave speed were greatest during large turns. Digital particle image velocimetry (DPIV) showed larger counter-rotating vortex pairs produced during turning by the ribbon fin in comparison to vortices rotating in the same direction during steady swimming. Our results highlight the ribbon fin's role in controlled rapid turning through modulation of wavelength, frequency and wave speed.


Asunto(s)
Gymnotiformes , Natación , Aletas de Animales , Animales , Fenómenos Biomecánicos , Hidrodinámica , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...