Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618959

RESUMEN

Administration of anti-RhD immunoglobulin (Ig) to decrease maternal alloimmunization (antibody-mediated immune suppression [AMIS]) was a landmark clinical development. However, IgG has potent immune-stimulatory effects in other settings (antibody-mediated immune enhancement [AMIE]). The dominant thinking has been that IgG causes AMIS for antigens on RBCs but AMIE for soluble antigens. However, we have recently reported that IgG against RBC antigens can cause either AMIS or AMIE as a function of an IgG subclass. Recent advances in mechanistic understanding have demonstrated that RBC alloimmunization requires the IFN-α/-ß receptor (IFNAR) and is inhibited by the complement C3 protein. Here, we demonstrate the opposite for AMIE of an RBC alloantigen (IFNAR is not required and C3 enhances). RBC clearance, C3 deposition, and antigen modulation all preceded AMIE, and both CD4+ T cells and marginal zone B cells were required. We detected no significant increase in antigen-specific germinal center B cells, consistent with other studies of RBC alloimmunization that show extrafollicular-like responses. To the best of our knowledge, these findings provide the first evidence of an RBC alloimmunization pathway which is IFNAR independent and C3 dependent, thus further advancing our understanding of RBCs as an immunogen and AMIE as a phenomenon.


Asunto(s)
Complemento C3 , Tejido Linfoide , Animales , Ratones , Linfocitos B , Eritrocitos , Inmunoglobulina G , Interferón-alfa
2.
Blood ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38513237

RESUMEN

Recent large-scale multi-omics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on two separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured L-carnitine and acyl-carnitines in 13,091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation (REDS) study. Genome wide association studies against 879,000 polymorphisms identified critical genetic factors contributing to inter-donor heterogeneity in end-of-storage carnitine levels, including common non-synonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, SLC16A9); carnitine synthesis (FLVCR1, MTDH) and metabolism (CPT1A, CPT2, CRAT, ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying two alleles of the rs12210538 SLC22A16 Single Nucleotide Polymorphism exhibited the lowest L-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice and Percoll density gradients of human RBCs, showed age-dependent depletions of L-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process following chemically induced membrane lipid damage. Supplementation of stored murine RBCs with L-carnitine boosted post-transfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.

3.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38260479

RESUMEN

Mature red blood cells (RBCs) lack mitochondria, and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo and during storage in vitro in the blood bank. Here we identify an association between blood donor age, sex, ethnicity and end-of-storage levels of glycolytic metabolites in 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study. Associations were also observed to ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (which we detected in mature RBCs), hexokinase 1, and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice, and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP levels, breakdown, and deamination into hypoxanthine were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions. Highlights: Blood donor age and sex affect glycolysis in stored RBCs from 13,029 volunteers;Ancestry, genetic polymorphisms in PFKP, HK1, CD38/BST1 influence RBC glycolysis;RBC PFKP boosts glycolytic fluxes when ATP is low, such as in stored RBCs;ATP and hypoxanthine are biomarkers of hemolysis in vitro and in vivo.

4.
J Pharmacol Exp Ther ; 386(3): 323-330, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348965

RESUMEN

Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans (∼5% of all individuals). G6PD deficiency (G6PDd) is caused by an unstable enzyme and manifests most strongly in red blood cells (RBCs) that cannot synthesize new protein. G6PDd RBCs have decreased ability to mitigate oxidative stress due to lower levels of NADPH, as a result of a defective pentose phosphate pathway. Accordingly, oxidative drugs can result in hemolysis and potentially life-threatening anemia in G6PDd patients. Dapsone is a highly useful drug for treating a variety of pathologies but oral dapsone is contraindicated in patients with G6PDd due to oxidative stress-induced anemia. Dapsone must be metabolized to become hemolytic. Dapsone hydroxylamine (DDS-NOH) has been implicated as the major hemolytic dapsone metabolite, but this has never been tested on G6PDd RBCs with in vivo circulation as a metric. Moreover, the metabolic lesion caused by DDS-NOH is unknown. We report that RBCs from a novel humanized mouse expressing the human Mediterranean G6PD-deficient variant have increased sensitivity to DDS-NOH. In addition, we show that DDS-NOH damaged RBCs can either undergo sequestration (with subsequent return to circulation) or permanent removal in a dose-dependent manner, with G6PD-sufficient RBCs mostly being sequestered, and G6PDd RBCs mostly being permanently removed. Finally, we characterize the metabolic lesion caused by DDS-NOH in G6PDd RBCs and report a blockage in terminal glycolysis resulting in a cellular accumulation of pyruvate. These findings confirm DDS-NOH as a hemolytic metabolite and elucidate metabolic effects of DDS-NOH on G6PDd RBCs. SIGNIFICANCE STATEMENT: These findings confirm that dapsone hydroxylamine, an active metabolite of dapsone, causes in vivo clearance of murine red blood cells expressing a human variant of deficient glucose 6-phosphate dehydrogenase (G6PD), an enzymopathy that affects half a billion individuals (G6PD deficiency). Both cellular mechanisms of clearance (sequestration versus destruction) and specific metabolic disturbances caused by dapsone hydroxylamine are elucidated, providing novel mechanistic understanding.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Hemólisis , Animales , Humanos , Ratones , Dapsona/farmacología , Dapsona/metabolismo , Eritrocitos/metabolismo , Glucosa/metabolismo , Deficiencia de Glucosafosfato Deshidrogenasa/complicaciones , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Fosfatos/metabolismo
5.
Transfusion ; 63(1): 239-248, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436200

RESUMEN

BACKGROUND: Transgenic mice expressing RBC specific antigens are widely used in mechanistic studies of RBC alloimmunization. Existing RBC donor strains have random transgene integration, potentially disrupting host elements that can confound biological interpretation. STUDY DESIGN AND METHODS: Integration site and genomic alterations were characterized by both targeted locus amplification and congenic backcrossing in the five most commonly used RBC alloantigen donor strains (KEL-K2hi , KEL-K2med , and KEL-K2lo , and KEL-K1). A targeted transgenic approach was developed to allow RBC specific transgene expression from a safe harbor locus (ROSA26). Alloimmune responses were assessed by transfusing alloantigen expressing RBCs into wild-type recipients and measuring alloantibodies by flow cytometry. RESULTS/FINDINGS: Four of the five analyzed strains had at least one gene disrupted by the transgene integration but none of the disrupted genes are known to be involved in RBC biology. The integration of KEL-K2med potentially altered the immunological properties of RBCs, although the biological significance of the observed changes is unclear. The ROSA26 targeted approach resulted in a single copy of the transgene that maintains RBC specific expression without random disruption of genomic elements. CONCLUSION: These findings provide a detailed characterization of genomic disruption by transgene integration found in commonly used RBC donor strains that is relevant to numerous previous publications as well as future studies. With the possible exception of KEL-K2med , transgene integration is not predicted to affect RBC biology in existing models, and new models can avoid this concern using the described targeted transgenic approach.


Asunto(s)
Antígenos de Grupos Sanguíneos , Eritrocitos , Isoanticuerpos , Animales , Ratones , Eritrocitos/inmunología , Isoanticuerpos/sangre , Ratones Endogámicos C57BL , Ratones Transgénicos , Transgenes/genética , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/inmunología
7.
Blood Transfus ; 21(1): 50-61, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36346885

RESUMEN

BACKGROUND: The Red blood cell (RBC) storage lesion results in decreased circulation and function of transfused RBCs. Elevated oxidant stress and impaired energy metabolism are a hallmark of the storage lesion in both human and murine RBCs. Although human studies don't suffer concerns that findings may not translate, they do suffer from genetic and environmental variability amongst subjects. Murine models can control for genetics, environment, and much interventional experimentation can be carried out in mice that is neither technically feasible nor ethical in humans. However, murine models are only useful to the extent that they have similar biology to humans. Hypoxic storage has been shown to mitigate the storage lesion in human RBCs, but has not been investigated in mice. MATERIALS AND METHODS: RBCs from a C57BL6/J mouse strain were stored under normoxic (untreated) or hypoxic conditions (SO2 ~ 26%) for 1h, 7 and 12 days. Samples were tested for metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics and end of storage post transfusion recovery. RESULTS: Hypoxic storage improved post-transfusion recovery and energy metabolism, including increased steady state and 13C3-labeled metabolites from glycolysis, high energy purines (adenosine triphosphate) and 2,3-diphospholgycerate. Hypoxic storage promoted glutaminolysis, increased glutathione pools, and was accompanied by elevation in the levels of free fatty acids and acyl-carnitines. DISCUSSION: This study isolates hypoxia, as a single independent variable, and shows similar effects as seen in human studies. These findings also demonstrate the translatability of murine models for hypoxic RBC storage and provide a pre-clinical platform for ongoing study.


Asunto(s)
Transfusión de Eritrocitos , Eritrocitos , Ratones , Humanos , Animales , Metabolismo Energético , Hipoxia/metabolismo , Glucólisis , Conservación de la Sangre/métodos
8.
Blood Adv ; 7(8): 1379-1393, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36469038

RESUMEN

Blood storage promotes the rapid depletion of red blood cell (RBC) high-energy adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG), which are critical regulators of erythrocyte physiology and function, as well as oxygen kinetics and posttransfusion survival. Sphingosine-1-phosphate (S1P) promotes fluxes through glycolysis. We hypothesized that S1P supplementation to stored RBC units would improve energy metabolism and posttransfusion recovery. We quantified S1P in 1929 samples (n = 643, storage days 10, 23, and 42) from the REDS RBC Omics study. We then supplemented human and murine RBCs from good storer (C57BL6/J) and poor storer strains (FVB) with S1P (1, 5, and 10 µM) before measurements of metabolism and posttransfusion recovery. Similar experiments were repeated for mice with genetic ablation of the S1P biosynthetic pathway (sphingosine kinase 1 [Sphk1] knockout [KO]). Sample analyses included metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics, and analysis of end-of-storage posttransfusion recovery, under normoxic and hypoxic storage conditions. Storage promoted decreases in S1P levels, which were the highest in units donated by female or older donors. Supplementation of S1P to human and murine RBCs boosted the steady-state levels of glycolytic metabolites and glycolytic fluxes, ie the generation of ATP and DPG, at the expense of the pentose phosphate pathway. Lower posttransfusion recovery was observed upon S1P supplementation. All these phenomena were reversed in Sphk1 KO mice or with hypoxic storage. S1P is a positive regulator of energy metabolism and a negative regulator of antioxidant metabolism in stored RBCs, resulting in lower posttransfusion recoveries in murine models.


Asunto(s)
Transfusión de Eritrocitos , Eritrocitos , Humanos , Femenino , Ratones , Animales , Transfusión de Eritrocitos/métodos , Eritrocitos/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/metabolismo , Ratones Noqueados , Hipoxia/metabolismo
9.
Transfusion ; 61(10): 3017-3025, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34480352

RESUMEN

BACKGROUND: Genetically modified mice are used widely to explore mechanisms in most biomedical fields-including transfusion. Concluding that a gene modification is responsible for a phenotypic change assumes no other differences between the gene-modified and wild-type mice besides the targetted gene. STUDY DESIGN AND METHODS: To test the hypothesis that the N-terminus of Band3, which regulates metabolism, affects RBC storage biology, RBCs from mice with a modified N-terminus of Band3 were stored under simulated blood bank conditions. All strains of mice were generated with the same initial embryonic stem cells from 129 mice and each strain was backcrossed with C57BL/6 (B6) mice. Both 24-h recoveries post-transfusion and metabolomics were determined for stored RBCs. Genetic profiles of mice were assessed by a high-resolution SNP array. RESULTS: RBCs from mice with a mutated Band3 N-terminus had increased lipid oxidation and worse 24-h recoveries, "demonstrating" that Band3 regulates oxidative injury during RBC storage. However, SNP analysis demonstrated variable inheritance of 129 genetic elements between strains. Controlled interbreeding experiments demonstrated that the changes in lipid oxidation and some of the decreased 24-hr recovery were caused by inheritance of a region of chromosome 1 of 129 origin, and not due to the modification of Band 3. SNP genotyping of a panel of commonly used commercially available KO mice showed considerable 129 contamination, despite wild-type B6 mice being listed as the correct control. DISCUSSION: Thousands of articles published each year use gene-modified mice, yet genetic background issues are rarely considered. Assessment of such issues are not, but should become, routine norms of murine experimentation.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/genética , Ratones/genética , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Investigación Biomédica , Conservación de la Sangre , Eritrocitos/metabolismo , Antecedentes Genéticos , Ratones/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo , Polimorfismo de Nucleótido Simple
10.
JCI Insight ; 6(14)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34138756

RESUMEN

Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is the single most common enzymopathy, present in approximately 400 million humans (approximately 5%). Its prevalence is hypothesized to be due to conferring resistance to malaria. However, G6PD deficiency also results in hemolytic sequelae from oxidant stress. Moreover, G6PD deficiency is associated with kidney disease, diabetes, pulmonary hypertension, immunological defects, and neurodegenerative diseases. To date, the only available mouse models have decreased levels of WT stable G6PD caused by promoter mutations. However, human G6PD mutations are missense mutations that result in decreased enzymatic stability. As such, this results in very low activity in red blood cells (RBCs) that cannot synthesize new protein. To generate a more accurate model, the human sequence for a severe form of G6PD deficiency, Med(-), was knocked into the murine G6PD locus. As predicted, G6PD levels were extremely low in RBCs, and deficient mice had increased hemolytic sequelae to oxidant stress. Nonerythroid organs had metabolic changes consistent with mild G6PD deficiency, consistent with what has been observed in humans. Juxtaposition of G6PD-deficient and WT mice revealed altered lipid metabolism in multiple organ systems. Together, these findings both establish a mouse model of G6PD deficiency that more accurately reflects human G6PD deficiency and advance our basic understanding of altered metabolism in this setting.


Asunto(s)
Eritrocitos/metabolismo , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Hemólisis/genética , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Glucosafosfato Deshidrogenasa/metabolismo , Deficiencia de Glucosafosfato Deshidrogenasa/sangre , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Humanos , Masculino , Ratones , Mutación , Estrés Oxidativo/genética
11.
Haematologica ; 106(11): 2971-2985, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979990

RESUMEN

Band 3 (anion exchanger 1; AE1) is the most abundant membrane protein in red blood cells, which in turn are the most abundant cells in the human body. A compelling model posits that, at high oxygen saturation, the N-terminal cytosolic domain of AE1 binds to and inhibits glycolytic enzymes, thus diverting metabolic fluxes to the pentose phosphate pathway to generate reducing equivalents. Dysfunction of this mechanism occurs during red blood cell aging or storage under blood bank conditions, suggesting a role for AE1 in the regulation of the quality of stored blood and efficacy of transfusion, a life-saving intervention for millions of recipients worldwide. Here we leveraged two murine models carrying genetic ablations of AE1 to provide mechanistic evidence of the role of this protein in the regulation of erythrocyte metabolism and storage quality. Metabolic observations in mice recapitulated those in a human subject lacking expression of AE11-11 (band 3 Neapolis), while common polymorphisms in the region coding for AE11-56 correlate with increased susceptibility to osmotic hemolysis in healthy blood donors. Through thermal proteome profiling and crosslinking proteomics, we provide a map of the red blood cell interactome, with a focus on AE11-56 and validate recombinant AE1 interactions with glyceraldehyde 3-phosphate dehydrogenase. As a proof-of-principle and to provide further mechanistic evidence of the role of AE1 in the regulation of redox homeo stasis of stored red blood cells, we show that incubation with a cell-penetrating AE11-56 peptide can rescue the metabolic defect in glutathione recycling and boost post-transfusion recovery of stored red blood cells from healthy human donors and genetically ablated mice.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Eritrocitos , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/química , Bancos de Sangre , Eritrocitos/metabolismo , Hemólisis , Humanos , Ratones , Oxidación-Reducción , Vía de Pentosa Fosfato
12.
Transfusion ; 61(6): 1867-1883, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33904180

RESUMEN

BACKGROUND: Increases in the red blood cell (RBC) degree of fatty acid desaturation are reported in response to exercise, aging, or diseases associated with systemic oxidant stress. However, no studies have focused on the presence and activity of fatty acid desaturases (FADS) in the mature RBC. STUDY DESIGN AND METHODS: Steady state metabolomics and isotope-labeled tracing experiments, immunofluorescence approaches, and pharmacological interventions were used to determine the degree of fatty acid unsaturation, FADS activity as a function of storage, oxidant stress, and G6PD deficiency in human and mouse RBCs. RESULTS: In 250 blood units from the REDS III RBC Omics recalled donor population, we report a storage-dependent accumulation of free mono-, poly-(PUFAs), and highly unsaturated fatty acids (HUFAs), which occur at a faster rate than saturated fatty acid accumulation. Through a combination of immunofluorescence, pharmacological inhibition, tracing experiments with stable isotope-labeled fatty acids, and oxidant challenge with hydrogen peroxide, we demonstrate the presence and redox-sensitive activity of FADS2, FADS1, and FADS5 in the mature RBC. Increases in PUFAs and HUFAs in human and mouse RBCs correlate negatively with storage hemolysis and positively with posttransfusion recovery. Inhibition of these enzymes decreases accumulation of free PUFAs and HUFAs in stored RBCs, concomitant to increases in pyruvate/lactate ratios. Alterations of this ratio in G6PD deficient patients or units supplemented with pyruvate-rich rejuvenation solutions corresponded to decreased PUFA and HUFA accumulation. CONCLUSION: Fatty acid desaturases are present and active in mature RBCs. Their activity is sensitive to oxidant stress, storage duration, and alterations of the pyruvate/lactate ratio.


Asunto(s)
Conservación de la Sangre/métodos , Eritrocitos/enzimología , Ácido Graso Desaturasas/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Animales , Donantes de Sangre , delta-5 Desaturasa de Ácido Graso , Eritrocitos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Humanos , Ácido Láctico/metabolismo , Metabolómica , Ratones , Estrés Oxidativo , Ácido Pirúvico/metabolismo
13.
Haematologica ; 106(10): 2726-2739, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33054131

RESUMEN

Red blood cells have the special challenge of a large amount of reactive oxygen species (from their substantial iron load and Fenton reactions) combined with the inability to synthesize new gene products. Considerable progress has been made in elucidating the multiple pathways by which red blood cells neutralize reactive oxygen species via NADPH driven redox reactions. However, far less is known about how red blood cells repair the inevitable damage that does occur when reactive oxygen species break through anti-oxidant defenses. When structural and functional proteins become oxidized, the only remedy available to red blood cells is direct repair of the damaged molecules, as red blood cells cannot synthesize new proteins. Amongst the most common amino acid targets of oxidative damage is the conversion of asparagine and aspartate side chains into a succinimidyl group through deamidation or dehydration, respectively. Red blood cells express an L-Isoaspartyl methyltransferase (PIMT, gene name PCMT1) that can convert succinimidyl groups back to an aspartate. Herein, we report that deletion of PCMT1 significantly alters red blood cell metabolism in a healthy state, but does not impair the circulatory lifespan of red blood cells. Through a combination of genetic ablation, bone marrow transplantation and oxidant stimulation with phenylhydrazine in vivo or blood storage ex vivo, we use omics approaches to show that, when animals are exposed to oxidative stress, red blood cells from PCMT1 knockout undergo significant metabolic reprogramming and increased hemolysis. This is the first report of an essential role of PCMT1 for normal RBC circulation during oxidative stress.


Asunto(s)
Ácido Isoaspártico , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa , Animales , Eritrocitos/metabolismo , Ácido Isoaspártico/metabolismo , Estrés Oxidativo , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/metabolismo , Especies Reactivas de Oxígeno
14.
Transfusion ; 61(3): 687-691, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33336414

RESUMEN

BACKGROUND: Platelet transfusions remain a mainstay of treatment for many patients with thrombocytopenia, but can lead to alloantibodies to Human Leukocyte Antigens (anti-HLA) resulting in inadequate responses to subsequent platelet transfusions (refractoriness), as well as complicate transplantation. Despite substantial decreases in alloimmunization with the implementation of leukoreduction, a significant percentage of patients still become alloimmunized following platelet transfusions. It remains unclear why some patients make anti-HLA antibodies, but others do not make anti-HLA antibodies even with chronic transfusion. Antecedent pregnancy correlates with risk of alloimmunization due to platelet transfusion in humans - however, isolation of pregnancy as a single variable is not possible in human populations. STUDY DESIGN AND METHODS: A tractable murine model of pregnancy and transfusion was engineered by breeding C57BL/6 (H-2b ) dames with BALB/c (H-2d ) sires. After pregnancy, female mice were transfused with leukoreduced platelets from F1 (H-2b/d ) donors that expressed the same paternal major histocompatibility complex (MHC) H-2d alloantigens as the sires. Control groups allowed isolation of pregnancy or transfusion alone as independent variables. Alloimmunization was determined by testing serum for antibodies to H-2d MHC alloantigens. RESULTS: No alloantibodies were detected after pregnancy alone, or in response to transfusion of platelets alone; however, significant levels of alloantibodies were detected when pregnancy was followed by transfusion. CONCLUSIONS: These findings isolate antecedent pregnancy as a causal contribution to increased frequencies of alloimmunization by subsequent platelet transfusion in mice and provide a platform for ongoing mechanistic investigation.


Asunto(s)
Antígenos HLA/inmunología , Isoanticuerpos/sangre , Isoanticuerpos/inmunología , Isoantígenos/sangre , Isoantígenos/inmunología , Transfusión de Plaquetas/efectos adversos , Animales , Plaquetas/inmunología , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Embarazo
15.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33351786

RESUMEN

Computational models based on recent maps of the RBC proteome suggest that mature erythrocytes may harbor targets for common drugs. This prediction is relevant to RBC storage in the blood bank, in which the impact of small molecule drugs or other xenometabolites deriving from dietary, iatrogenic, or environmental exposures ("exposome") may alter erythrocyte energy and redox metabolism and, in so doing, affect red cell storage quality and posttransfusion efficacy. To test this prediction, here we provide a comprehensive characterization of the blood donor exposome, including the detection of common prescription and over-the-counter drugs in blood units donated by 250 healthy volunteers in the Recipient Epidemiology and Donor Evaluation Study III Red Blood Cell-Omics (REDS-III RBC-Omics) Study. Based on high-throughput drug screenings of 1366 FDA-approved drugs, we report that approximately 65% of the tested drugs had an impact on erythrocyte metabolism. Machine learning models built using metabolites as predictors were able to accurately predict drugs for several drug classes/targets (bisphosphonates, anticholinergics, calcium channel blockers, adrenergics, proton pump inhibitors, antimetabolites, selective serotonin reuptake inhibitors, and mTOR), suggesting that these drugs have a direct, conserved, and substantial impact on erythrocyte metabolism. As a proof of principle, here we show that the antacid ranitidine - though rarely detected in the blood donor population - has a strong effect on RBC markers of storage quality in vitro. We thus show that supplementation of blood units stored in bags with ranitidine could - through mechanisms involving sphingosine 1-phosphate-dependent modulation of erythrocyte glycolysis and/or direct binding to hemoglobin - improve erythrocyte metabolism and storage quality.


Asunto(s)
Donantes de Sangre , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Exposoma , Medicamentos sin Prescripción/efectos adversos , Medicamentos sin Prescripción/farmacocinética , Medicamentos bajo Prescripción/efectos adversos , Medicamentos bajo Prescripción/farmacocinética , Adolescente , Adulto , Anciano , Animales , Metabolismo Energético/efectos de los fármacos , Transfusión de Eritrocitos , Femenino , Glucólisis/efectos de los fármacos , Voluntarios Sanos , Hemoglobinas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Técnicas In Vitro , Aprendizaje Automático , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Modelos Biológicos , Oxidación-Reducción/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ranitidina/farmacología , Adulto Joven
16.
Front Immunol ; 11: 1516, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765523

RESUMEN

It has long been appreciated that immunoglobulins are not just the effector endpoint of humoral immunity, but rather have a complex role in regulating antibody responses themselves. Donor derived anti-RhD IgG has been used for over 50 years as an immunoprophylactic to prevent maternal alloimmunization to RhD. Although anti-RhD has dramatically decreased rates of hemolytic disease of the fetus and newborn (for the RhD alloantigen), anti-RhD also fails in some cases, and can even paradoxically enhance immune responses in some circumstances. Attempts to generate a monoclonal anti-RhD have largely failed, with some monoclonals suppressing less than donor derived anti-RhD and others enhancing immunity. These difficulties likely result, in part, because the mechanism of anti-RhD remains unclear. However, substantial evidence exists to reject the common explanations of simple clearance of RhD + RBCs or masking of antigen. Donor derived anti-RhD is a mixture of 4 different IgG subtypes. To the best of our knowledge an analysis of the role different IgG subtypes play in immunoregulation has not been carried out; and, only IgG1 and IgG3 have been tested as monoclonals. Multiple attempts to elicit alloimmune responses to human RhD epitopes in mice have failed. To circumvent this limitation, we utilize a tractable animal model of RBC alloimmunization using the human Kell glycoprotein as an antigen to test the effect of IgG subtype on immunoregulation by antibodies to RBC alloantigens. We report that the ability of an anti-RBC IgG to enhance, suppress (at the level of IgM responses), or have no effect is a function of the IgG subclass in this model system.


Asunto(s)
Eritrocitos/inmunología , Inmunidad Humoral , Inmunoglobulina G/inmunología , Inmunomodulación , Isoanticuerpos/inmunología , Isoantígenos/inmunología , Receptores Fc/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Eritrocitos/metabolismo , Inmunización Pasiva , Ratones , Ratones Noqueados
17.
J Clin Invest ; 130(11): 5909-5923, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32730229

RESUMEN

Antibodies targeting human leukocyte antigen (HLA)/major histocompatibility complex (MHC) proteins limit successful transplantation and transfusion, and their presence in blood products can cause lethal transfusion-related acute lung injury (TRALI). It is unclear which cell types are bound by these anti-leukocyte antibodies to initiate an immunologic cascade resulting in lung injury. We therefore conditionally removed MHC class I (MHC I) from likely cellular targets in antibody-mediated lung injury. Only the removal of endothelial MHC I reduced lung injury and mortality, related mechanistically to absent endothelial complement fixation and lung platelet retention. Restoration of endothelial MHC I rendered MHC I-deficient mice susceptible to lung injury. Neutrophil responses, including neutrophil extracellular trap (NET) release, were intact in endothelial MHC I-deficient mice, whereas complement depletion reduced both lung injury and NETs. Human pulmonary endothelial cells showed high HLA class I expression, and posttransfusion complement activation was increased in clinical TRALI. These results indicate that the critical source of antigen for anti-leukocyte antibodies is in fact the endothelium, which reframes our understanding of TRALI as a rapid-onset vasculitis. Inhibition of complement activation may have multiple beneficial effects of reducing endothelial injury, platelet retention, and NET release in conditions where antibodies trigger these pathogenic responses.


Asunto(s)
Activación de Complemento/inmunología , Endotelio/inmunología , Isoanticuerpos/inmunología , Lesión Pulmonar Aguda Postransfusional/inmunología , Animales , Línea Celular , Endotelio/patología , Trampas Extracelulares/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Ratones , Ratones Endogámicos BALB C , Neutrófilos/inmunología , Neutrófilos/patología , Lesión Pulmonar Aguda Postransfusional/patología
18.
J Autoimmun ; 114: 102489, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32507505

RESUMEN

Autoimmune hemolytic anemia (AIHA) leads to accelerated destruction of autologous red blood cells (RBCs) by autoantibodies. AIHA is a severe and sometimes fatal disease. While there are several therapeutic strategies available, there are currently no licensed treatments for AIHA and few therapeutics result in treatment-free durable remission. The etiology of primary AIHA is unknown; however, secondary AIHA occurs concurrently with lymphoproliferative disorders and infections. Additionally, AIHA is the second most common manifestation of primary immunodeficiency disorders and has been described as a side effect of checkpoint inhibitor therapy. Given the severity of AIHA and the lack of treatment options, understanding the initiation of autoimmunity is imperative. Herein, we utilized a well-described model of RBC biology to dissect how RBC-specific autoreactive T cells become educated against RBC autoantigens. We show that, unlike most autoantigens, T cells do not encounter RBC autoantigens in the thymus. Instead, when they leave the thymus as recent thymic emigrants (RTEs), they retain the ability to positively respond to RBC autoantigens; only after several weeks in circulation do RTEs become nonresponsive. Together, these data suggest that any disruption in this process would lead to breakdown of tolerance and initiation of autoimmunity. Thus, RTEs and this developmental process are potential targets to prevent and treat AIHA.


Asunto(s)
Autoinmunidad , Movimiento Celular/inmunología , Eritrocitos/inmunología , Tolerancia Inmunológica , Linfocitos T/inmunología , Timo/inmunología , Anemia Hemolítica Autoinmune/sangre , Anemia Hemolítica Autoinmune/diagnóstico , Anemia Hemolítica Autoinmune/inmunología , Anemia Hemolítica Autoinmune/terapia , Autoantígenos/inmunología , Humanos , Linfocitos T/metabolismo
19.
Transfusion ; 60(6): 1212-1226, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32339326

RESUMEN

BACKGROUND: Taurine is an antioxidant that is abundant in some common energy drinks. Here we hypothesized that the antioxidant activity of taurine in red blood cells (RBCs) could be leveraged to counteract storage-induced oxidant stress. STUDY DESIGN AND METHODS: Metabolomics analyses were performed on plasma and RBCs from healthy volunteers (n = 4) at baseline and after consumption of a whole can of a common, taurine-rich (1000 mg/serving) energy drink. Reductionistic studies were also performed by incubating human RBCs with taurine ex vivo (unlabeled or 13 C15 N-labeled) at increasing doses (0, 100, 500, and 1000 µmol/L) at 37°C for up to 16 hours, with and without oxidant stress challenge with hydrogen peroxide (0.1% or 0.5%). Finally, we stored human and murine RBCs under blood bank conditions in additives supplemented with 500 µmol/L taurine, before metabolomics and posttransfusion recovery studies. RESULTS: Consumption of energy drinks increased plasma and RBC levels of taurine, which was paralleled by increases in glycolysis and glutathione (GSH) metabolism in the RBC. These observations were recapitulated ex vivo after incubation with taurine and hydrogen peroxide. Taurine levels in the RBCs from the REDS-III RBC-Omics donor biobank were directly proportional to the total levels of GSH and glutathionylated metabolites and inversely correlated to oxidative hemolysis measurements. Storage of human RBCs in the presence of taurine improved energy and redox markers of storage quality and increased posttransfusion recoveries in FVB mice. CONCLUSION: Taurine modulates RBC antioxidant metabolism in vivo and ex vivo, an observation of potential relevance to transfusion medicine.


Asunto(s)
Donantes de Sangre , Conservación de la Sangre , Eritrocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Taurina/farmacocinética , Animales , Humanos , Metabolómica , Ratones , Taurina/farmacología
20.
Blood Adv ; 4(7): 1526-1537, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32289162

RESUMEN

Antibodies are typically thought of as the endpoint of humoral immunity that occur as the result of an adaptive immune response. However, affinity-matured antibodies can be present at the initiation of a new immune response, most commonly because of passive administration as a medical therapy. The current paradigm is that immunoglobulin M (IgM), IgA, and IgE enhance subsequent humoral immunity. In contrast, IgG has a "dual effect" in which it enhances responses to soluble antigens but suppresses responses to antigens on red blood cells (RBCs) (eg, immunoprophylaxis with anti-RhD). Here, we report a system in which passive antibody to an RBC antigen promotes a robust cellular immune response leading to endogenous CD4+ T-cell activation, germinal center formation, antibody secretion, and immunological memory. The mechanism requires ligation of Fcγ receptors on a specific subset of dendritic cells that results in CD4+ T-cell activation and expansion. Moreover, antibodies cross-enhance responses to a third-party antigen, but only if it is expressed on the same RBC as the antigen recognized by the antibody. Importantly, these observations were IgG subtype specific. Thus, these findings demonstrate that antibodies to RBC alloantigens can enhance humoral immunity in an IgG subtype-specific fashion and provide mechanistic elucidation of the enhancing effects.


Asunto(s)
Inmunidad Humoral , Isoantígenos , Animales , Eritrocitos , Inmunoglobulina G , Inmunoglobulina M , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...