Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 102: 101848, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33875178

RESUMEN

Similarities and differences between Australia and New Zealand in Harmful Algal species occurrences and Harmful Algal Events impacting on human society (HAEDAT) are reported and factors that explain their differences explored. Weekly monitoring of harmful phytoplankton and biotoxins commenced in Australia in 1986 and in New Zealand in 1993. Anecdotal historic HAB records in both countries are also catalogued. In Australia, unprecedented highly toxic Paralytic Shellfish Toxin (PST)-producing blooms of Alexandrium catenella have impacted the seafood industry along the 200 km east coast of Tasmania from 2012 to present. Toxic blooms in 1986-1993 by Gymnodinium catenatum in Tasmania were effectively mitigated by closing the affected area for shellfish farming, while a bloom by this same species in 2000 in New Zealand caused significant economic damage from restrictions on the movement of greenshell mussel spat. The biggest biotoxin event in New Zealand was an unexpected outbreak of Neurotoxic Shellfish Poisoning (NSP) in 1993 in Hauraki Gulf (putatively due to Karenia cf. mikimotoi) with 180 reported cases of human poisonings as well as reports of respiratory irritation north of Auckland. Strikingly, NSP never recurred in New Zealand since and no NSP events have ever been reported in Australia. In New Zealand, Paralytic Shellfish Poisoning (PSP) was the predominant seafood toxin syndrome, while in Australia Ciguatera Fish Poisoning (CFP) was the major reported seafood toxin syndrome, while no CFP has been recorded from consumption of New Zealand fish. In Australia, Diarrhetic Shellfish Poisoning (DSP) illnesses were recorded from two related outbreaks in 1997/98 following consumption of beach harvested clams (pipis) from a previously non-monitored area, whereas in New Zealand limited DSP illnesses are known. No human illnesses from Amnesic Shellfish Poisoning (ASP) have been reported in either Australia or New Zealand. Selected examples of HABs appearing and disappearing (NSP in New Zealand, Alexandrium catenella in Tasmania), species expanding their ranges (Noctiluca, Gambierdiscus), and reputed ballast water introductions (Gymnodinium catenatum) are discussed. Eutrophication has rarely been invoked as a cause except for confined estuaries and fish ponds and estuarine cyanobacterial blooms. No trend in the number of HAEDAT events from 1985 to 2018 was discernible.


Asunto(s)
Dinoflagelados , Intoxicación por Mariscos , Animales , Australia , Nueva Zelanda/epidemiología , Mariscos/análisis
2.
Toxicon ; 90: 213-25, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25157803

RESUMEN

For the first time wild-caught Tasmanian abalone, Haliotis rubra, have been reported to contain paralytic shellfish toxins (PSTs). This observation followed blooms of the toxic dinoflagellate Gymnodinium catenatum. No illnesses were reported, but harvesting restrictions were enforced in commercial areas. Abalone were assayed using HPLC-FLD methodology based on AOAC official method 2005.06. An uncommon congener, deoxydecarbamoyl-STX (doSTX), was observed in addition to regulated PSTs as unassigned chromatographic peaks. A quantitative reference material was prepared from contaminated Tasmanian abalone viscera and ampouled at 54.2 µmol/L. The LD50 of doSTX via intraperitoneal injection was 1069 nmol/kg (95% confidence limits 983-1100 nmol/kg), indicating it is nearly 40 times less toxic than STX. A toxicity equivalence factor of 0.042 was generated using the mouse bioassay. Levels of PSTs varied among individuals from the same site, although the toxin profile remained relatively consistent. In the foot tissue, STX, decarbamoyl-STX and doSTX were identified. On a molar basis doSTX was the dominant congener in both foot and viscera samples. The viscera toxin profile was more complex, with other less toxic PST congeners observed and was similar to mussels from the same site. This finding implicates localised dinoflagellate blooms as the PST source in Tasmanian abalone.


Asunto(s)
Gastrópodos/metabolismo , Toxinas Marinas/metabolismo , Animales , Cromatografía Liquida , Toxinas Marinas/aislamiento & purificación , Toxinas Marinas/toxicidad , Estándares de Referencia , Espectrometría de Masas en Tándem , Tasmania
3.
Toxicon ; 58(1): 101-11, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21640130

RESUMEN

Farmed greenlip abalone Haliotis laevigata were fed commercial seaweed-based food pellets or feed pellets supplemented with 8 × 105 Alexandrium minutum dinoflagellate cells g⁻¹ (containing 12 ± 3.0 µg STX-equivalent 100 g⁻¹, which was mainly GTX-1,4) every second day for 50 days. Exposure of abalone to PST supplemented feed for 50 days did not affect behaviour or survival but saw accumulation of up to 1.6 µg STX-equivalent 100 g⁻¹ in the abalone foot tissue (muscle, mouth without oesophagus and epipodial fringe), which is ∼50 times lower than the maximum permissible limit (80 µg 100 g⁻¹ tissue) for PSTs in molluscan shellfish. The PST levels in the foot were reduced to 0.48 µg STX-equivalent 100 g⁻¹ after scrubbing and removal of the pigment surrounding the epithelium of the epipodial fringe (confirmed by both HPLC and LC-MS/MS). Thus, scrubbing the epipodial fringe, a common procedure during commercial abalone canning, reduced PST levels by ∼70%. Only trace levels of PSTs were detected in the viscera (stomach, gut, heart, gonad, gills and mantle) of the abalone. A toxin reduction of approximately 73% was observed in STX-contaminated abalone held in clean water and fed uncontaminated food over 50 days. The low level of PST uptake when abalone were exposed to high numbers of A. minutum cells over a prolonged period may indicate a low risk of PSP poisoning to humans from the consumption of H. laevigata that has been exposed to a bloom of potentially toxic A. minutum in Australia. Further research is required to establish if non-dietary accumulation can result in significant levels of PSTs in abalone.


Asunto(s)
Dinoflagelados/química , Gastrópodos/metabolismo , Toxinas Marinas/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Humanos , Toxinas Marinas/farmacología , Medición de Riesgo , Intoxicación por Mariscos/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...