Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(16): e2308103, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38018335

RESUMEN

Bright afterglow room-temperature phosphorescence (RTP) soon after ceasing excitation is a promising technique for greatly increasing anti-counterfeiting capabilities. The development of a process for rapid high-resolution afterglow patterning of crystalline materials can improve both high-speed fabrication of anti-counterfeiting afterglow media and stable afterglow readout compared with those achieved with amorphous materials. Here, the high-resolution afterglow patterning of crystalline materials via cooperative organic vapo- and photo-stimulation is reported. A single crystal of (S)-(-)-2,2'-bis(diphenylphosphino)-5,5',6,6',7,7'8,8'-octahydro-1,1'-binaphthyl [(S)-H8-BINAP] doped with (S)-(-)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl [(S)-BINAP] shows green afterglow RTP. Crystals of (S)-BINAP-doped (S)-H8-BINAP changed to an amorphous state with no afterglow capability on weak continuous photoirradiation under dichloromethane (DCM) vapor. Photoirradiation induced oxidation of the (S)-H8-BINAP host molecule in the crystal. The oxidized (S)-H8-BINAP forms on the crystal surface strongly interacted with DCM molecules, which induces melting of the (S)-BINAP-doped (S)-H8-BINAP crystal and trigger formation of an amorphous state without an afterglow capability. High-resolution afterglow patterning of the crystalline film is rapidly achieved by using cooperative organic vapo- and photo-stimulation. In addition to the benefit of rapid afterglow patterning, the formed afterglow images of the crystalline film can be repeatedly read out under ambient conditions without DCM vapor.

2.
Adv Sci (Weinh) ; 10(36): e2304374, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897314

RESUMEN

Afterglow room-temperature emission that is independent of autofluorescence after ceasing excitation is a promising technology for state-of-the-art bioimaging and security devices. However, the low brightness of the afterglow emission is a current limitation for using such materials in a variety of applications. Herein, the continuous formation of condensed triplet excitons for brighter afterglow room-temperature phosphorescence is reported. (S)-(-)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl ((S)-BINAP) incorporated in a crystalline host lattice showed bright green afterglow room-temperature phosphorescence under strong excitation. The small triplet-triplet absorption cross-section of (S)-BINAP in the whole range of visible wavelengths greatly suppressed the deactivation caused by Förster resonance energy transfer from excited states of (S)-BINAP to the accumulated triplet excitons of (S)-BINAP under strong continuous excitation. The steady-state concentration of the triplet excitons for (S)-BINAP reached 2.3 × 10-2  M, producing a bright afterglow. Owing to the brighter afterglow, afterglow detection using individual particles with sizes approaching the diffraction limit in aqueous conditions and irradiance-dependent anticounterfeiting can be achieved.

3.
JACS Au ; 1(7): 945-954, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34467341

RESUMEN

Highly efficient persistent (lifetime > 0.1 s) room-temperature phosphorescence (pRTP) chromophores are important for futuristic high-resolution afterglow imaging for state-of-the-art security, analytical, and bioimaging applications. Suppression of the radiationless transition from the lowest triplet excited state (T1) of the chromophores is a critical factor to access the high RTP yield and RTP lifetime for desirable pRTP. Logical explanations for factor suppression based on chemical structures have not been reported. Here we clarify a strategy to reduce the radiationless transition from T1 based on chemical backbones and yield a simultaneous high RTP yield and high RTP lifetime. Yellow phosphorescence chromophores that contain a coronene backbone were synthesized and compared with yellow phosphorescent naphthalene. One of the designed coronene derivatives reached a RTP yield of 35%, which is the best value for chromophores with a RTP lifetime of 2 s. The optically measured rate constant of a radiationless transition from T1 was correlated precisely with a multiplication of vibrational spin-orbit coupling (SOC) at a T1 geometry and with the Franck-Condon chromophore factor. The agreement between the experimental and theoretical results confirmed that the extended two-dimensional fused structure in the coronene backbone contributes to a decrease in vibrational SOC and Franck-Condon factor between T1 and the ground state to decrease the radiationless transition. A resolution-tunable afterglow that depends on excitation intensity for anticounterfeit technology was demonstrated, and the resultant chromophores with a high RTP yield and high RTP lifetime were ideal for largely changing the resolution using weak excitation light.

4.
Chem Commun (Camb) ; 57(14): 1738-1741, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33544108

RESUMEN

A chiral chromophore with thermally activated delayed fluorescence characteristics is designed. A model describing vibrations of the dihedral angle between donor and acceptor units allowed at room temperature explains the enhanced fluorescence rate of the molecule, including a nearly 100% photoluminescence quantum yield and the absence of circularly polarized emission characteristics from enantiomers of the chromophore.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...