Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35887115

RESUMEN

The receptor activator of NF-κB ligand (RANKL)-binding peptide, OP3-4, is known to stimulate bone morphogenetic protein (BMP)-2-induced bone formation, but peptides tend to aggregate and lose their bioactivity. Cholesterol-bearing pullulan (CHP) nanogel scaffold has been shown to prevent aggregation of peptides and to allow their sustained release and activity; however, the appropriate design of CHP nanogels to conduct local bone formation needs to be developed. In the present study, we investigated the osteoconductive capacity of a newly synthesized CHP nanogel, CHPA using OP3-4 and BMP-2. We also clarified the difference between perforated and nonperforated CHPA impregnated with the two signaling molecules. Thirty-six, five-week-old male BALB/c mice were used for the calvarial defect model. The mice were euthanized at 6 weeks postoperatively. A higher cortical bone mineral content and bone formation rate were observed in the perforated scaffold in comparison to the nonperforated scaffold, especially in the OP3-4/BMP-2 combination group. The degradation rate of scaffold material in the perforated OP3-4/BMP-2 combination group was lower than that in the nonperforated group. These data suggest that perforated CHPA nanogel could lead to local bone formation induced by OP3-4 and BMP-2 and clarified the appropriate degradation rate for inducing local bone formation when CHPA nanogels are designed to be perforated.


Asunto(s)
Proteína Morfogenética Ósea 2 , Hidrogeles , Animales , Proteína Morfogenética Ósea 2/farmacología , Regeneración Ósea , Colesterol/química , Glucanos , Masculino , Ratones , Nanogeles , Péptidos/farmacología
2.
ACS Appl Bio Mater ; 4(11): 7848-7855, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35006766

RESUMEN

The introduction of functional material supports or spacers into cell spheroids increases the free volume, allowing oxygen, nutrients, and waste products to diffuse in and out more freely. Here, a biocompatible polysaccharide spacer material was investigated. Microspheres were prepared by cross-linking cholesterol-modified pullulan (CHP) nanogels with poly(ethylene glycol) (PEG). The ratio of modified CHP nanogel to PEG cross-linker was optimized to give uniform microspheres with an average diameter of approximately 14 µm. Rhodamine B-labeled microspheres showed a homogeneous assembly with bone marrow-derived mesenchymal stem cells (1:1 ratio) to create hybrid cell spheroids. The addition of the cross-linked nanogel spacers did not affect the cell viability, indicating that the microspheres provided a biocompatible scaffold that supported cell proliferation. In addition, the microspheres were stable under culture conditions over 14 days. The hybrid cell spheroids were scaled up to millimeter size to demonstrate their potential as a transplantable treatment, and the cells were found to maintain their high viability. The hybrid cell spheroids are expected to support the production of organoids.


Asunto(s)
Matriz Extracelular , Polietilenglicoles , Materiales Biocompatibles , Células Híbridas , Microesferas , Nanogeles , Polietileneimina
3.
Plant Cell Physiol ; 61(6): 1041-1053, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32191315

RESUMEN

The toxic alkaloid nicotine is produced in the roots of Nicotiana species and primarily accumulates in leaves as a specialized metabolite. A series of metabolic and transport genes involved in the nicotine pathway are coordinately upregulated by a pair of jasmonate-responsive AP2/ERF-family transcription factors, NtERF189 and NtERF199, in the roots of Nicotiana tabacum (tobacco). In this study, we explored the potential of manipulating the expression of these transcriptional regulators to alter nicotine biosynthesis in tobacco. The transient overexpression of NtERF189 led to alkaloid production in the leaves of Nicotiana benthamiana and Nicotiana alata. This ectopic production was further enhanced by co-overexpressing a gene encoding a basic helix-loop-helix-family MYC2 transcription factor. Constitutive and leaf-specific overexpression of NtERF189 increased the accumulation of foliar alkaloids in transgenic tobacco plants but negatively affected plant growth. By contrast, in a knockout mutant of NtERF189 and NtERF199 obtained through CRISPR/Cas9-based genome editing, alkaloid levels were drastically reduced without causing major growth defects. Metabolite profiling revealed the impact of manipulating the nicotine pathway on a wide range of nitrogen- and carbon-containing metabolites. Our findings provide insights into the biotechnological applications of engineering metabolic pathways by targeting transcription factors.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Nicotiana/genética , Nicotina/biosíntesis , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes , Redes y Vías Metabólicas/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA