Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Am J Physiol Renal Physiol ; 327(2): F224-F234, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867674

RESUMEN

We tested the hypothesis that compliance with the National Institute for Occupational Safety and Health (NIOSH) heat stress recommendations will prevent reductions in glomerular filtration rate (GFR) across a range of wet-bulb globe temperatures (WBGTs) and work-rest ratios at a fixed work intensity. We also tested the hypothesis that noncompliance would result in a reduction in GFR compared with a work-rest matched compliant trial. Twelve healthy adults completed five trials (four NIOSH compliant and one noncompliant) that consisted of 4 h of exposure to a range of WBGTs. Subjects walked on a treadmill (heat production: approximately 430 W) and work-rest ratios (work/h: 60, 45, 30, and 15 min) were prescribed as a function of WBGT (24°C, 26.5°C, 28.5°C, 30°C, and 36°C), and subjects drank a sport drink ad libitum. Peak core temperature (TC) and percentage change in body weight (%ΔBW) were measured. Creatinine clearance measured pre- and postexposure provided a primary marker of GFR. Peak TC did not differ among NIOSH-compliant trials (P = 0.065) but differed between compliant versus noncompliant trials (P < 0.001). %ΔBW did not differ among NIOSH-compliant trials (P = 0.131) or between compliant versus noncompliant trials (P = 0.185). Creatinine clearance did not change or differ among compliant trials (P ≥ 0.079). Creatinine clearance did not change or differ between compliant versus noncompliant trials (P ≥ 0.661). Compliance with the NIOSH recommendations maintained GFR. Surprisingly, despite a greater heat strain in a noncompliant trial, GFR was maintained highlighting the potential relative importance of hydration.NEW & NOTEWORTHY We highlight that glomerular filtration rate (GFR) is maintained during simulated occupational heat stress across a range of total work, work-rest ratios, and wet-bulb globe temperatures with ad libitum consumption of an electrolyte and sugar-containing sports drink. Compared with a work-rest matched compliant trial, noncompliance resulted in augmented heat strain but did not induce a reduction in GFR likely due to an increased relative fluid intake and robust fluid conservatory responses.


Asunto(s)
Creatinina , Tasa de Filtración Glomerular , Trastornos de Estrés por Calor , Calor , Humanos , Masculino , Adulto , Femenino , Creatinina/sangre , Trastornos de Estrés por Calor/fisiopatología , Exposición Profesional/efectos adversos , Adulto Joven , Respuesta al Choque Térmico/fisiología , Estados Unidos , Riñón/metabolismo , National Institute for Occupational Safety and Health, U.S. , Enfermedades Profesionales/fisiopatología , Enfermedades Profesionales/prevención & control
2.
J Strength Cond Res ; 38(7): 1350-1357, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775794

RESUMEN

ABSTRACT: Pryor, JL, Sweet, D, Rosbrook, P, Qiao, J, Hess, HW, and Looney, DP. Resistance training in the heat: Mechanisms of hypertrophy and performance enhancement. J Strength Cond Res 38(7): 1350-1357, 2024-The addition of heat stress to resistance exercise or heated resistance exercise (HRE) is growing in popularity as emerging evidence indicates altered neuromuscular function and an amplification of several mechanistic targets of protein synthesis. Studies demonstrating increased protein synthesis activity have shown temperature-dependent mammalian target of rapamycin phosphorylation, supplemental calcium release, augmented heat shock protein expression, and altered immune and hormone activity. These intriguing observations have largely stemmed from myotube, isolated muscle fiber, or rodent models using passive heating alone or in combination with immobilization or injury models. A growing number of translational studies in humans show comparable results employing local tissue or whole-body heat with and without resistance exercise. While few, these translational studies are immensely valuable as they are most applicable to sport and exercise. As such, this brief narrative review aims to discuss evidence primarily from human HRE studies detailing the neuromuscular, hormonal, and molecular responses to HRE and subsequent strength and hypertrophy adaptations. Much remains unknown in this exciting new area of inquiry from both a mechanistic and functional perspective warranting continued research.


Asunto(s)
Calor , Músculo Esquelético , Entrenamiento de Fuerza , Entrenamiento de Fuerza/métodos , Humanos , Músculo Esquelético/fisiología , Hipertrofia , Fuerza Muscular/fisiología , Adaptación Fisiológica/fisiología , Animales , Rendimiento Atlético/fisiología
3.
Undersea Hyperb Med ; 51(1): 59-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38615355

RESUMEN

Introduction: Indigenous populations renowned for apneic diving have comparatively large spleen volumes. It has been proposed that a larger spleen translates to heightened apnea-induced splenic contraction and elevations in circulating hemoglobin mass (Hbmass), which, in theory, improves O2 carrying and/or CO2/pH buffering capacities. However, the relation between resting spleen volume and apnea- induced increases in Hbmass is unknown. Therefore, we tested the hypothesis that resting spleen volume is positively related to apnea-induced increases in total Hbmass. Methods: Fourteen healthy adults (six women; 29 ± 5 years) completed a two-minute carbon monoxide rebreathe procedure to measure pre-apneas Hbmass and blood volume. Spleen length, width, and thickness were measured pre-and post-five maximal apneas via ultrasound. Spleen volume was calculated via the Pilström equation (test-retest CV:2 ± 2%). Hemoglobin concentration ([Hb]; g/dl) and hematocrit (%) were measured pre- and post-apneas via capillary blood samples. Post-apneas Hbmass was estimated as post-apnea [Hb] x pre-apnea blood volume. Data are presented as mean ± SD. Results: Spleen volume decreased from pre- (247 ± 95 mL) to post- (200 ± 82 mL, p<0.01) apneas. [Hb] (14.6 ± 1.2 vs. 14.9 ± 1.2 g/dL, p<0.01), hematocrit (44 ± 3 vs. 45 ± 3%, p=0.04), and Hbmass (1025 ± 322 vs. 1046 ± 339 g, p=0.03) increased from pre- to post-apneas. Pre-apneas spleen volume was unrelated to post-apneas increases in Hbmass (r=-0.02, p=0.47). O2 (+28 ± 31 mL, p<0.01) and CO2 (+31 ± 35 mL, p<0.01) carrying capacities increased post-apneas. Conclusion: Larger spleen volume is not associated with a greater rise in apneas-induced increases in Hbmass in non-apnea-trained healthy adults.


Asunto(s)
Apnea , Bazo , Adulto , Femenino , Humanos , Bazo/diagnóstico por imagen , Dióxido de Carbono , Volumen Sanguíneo , Hemoglobinas
4.
Am J Physiol Renal Physiol ; 326(5): F802-F813, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545652

RESUMEN

Men are likely at greater risk for heat-induced acute kidney injury compared with women, possibly due to differences in vascular control. We tested the hypothesis that the renal vasoconstrictor and vasodilator responses will be greater in younger women compared with men during passive heat stress. Twenty-five healthy adults [12 women (early follicular phase) and 13 men] completed two experimental visits, heat stress or normothermic time-control, assigned in a block-randomized crossover design. During heat stress, participants wore a water-perfused suit perfused with 50°C water. Core temperature was increased by ∼0.8°C in the first hour before commencing a 2-min cold pressor test (CPT). Core temperature remained clamped and at 1-h post-CPT, subjects ingested a whey protein shake (1.2 g of protein/kg body wt), and measurements were taken pre-, 75 min, and 150 min post-protein. Beat-to-beat blood pressure (Penaz method) was measured and segmental artery vascular resistance (VR, Doppler ultrasound) was calculated as segmental artery blood velocity ÷ mean arterial pressure. CPT-induced increases in segmental artery VR did not differ between trials (trial effect: P = 0.142) nor between men (heat stress: 1.5 ± 1.0 mmHg/cm/s, normothermia: 1.4 ± 1.0 mmHg/cm/s) and women (heat stress: 1.4 ± 1.2 mmHg/cm/s, normothermia: 2.1 ± 1.1 mmHg/cm/s) (group effect: P = 0.429). Reductions in segmental artery VR following oral protein loading did not differ between trials (trial effect: P = 0.080) nor between men (heat stress: -0.6 ± 0.8 mmHg/cm/s, normothermia: -0.6 ± 0.6 mmHg/cm/s) and women (heat stress: -0.5 ± 0.5 mmHg/cm/s, normothermia: -1.1 ± 0.6 mmHg/cm/s) (group effect: P = 0.204). Renal vasoconstrictor responses to the cold pressor test and vasodilator responses following an oral protein load during heat stress or normothermia do not differ between younger men and younger women in the early follicular phase of the menstrual cycle.NEW & NOTEWORTHY The mechanisms underlying greater heat-induced acute kidney injury risk in men versus women remain unknown. This study examined renal vascular control, including both vasodilatory (oral protein load) and vasoconstrictor (cold presser test) responses, during normothermia and heat stress and compared these responses between men and women. The results indicated that in both conditions neither renal vasodilatory nor vasoconstrictor responses differ between younger men and younger women.


Asunto(s)
Respuesta al Choque Térmico , Vasodilatación , Humanos , Femenino , Masculino , Adulto , Adulto Joven , Respuesta al Choque Térmico/fisiología , Estudios Cruzados , Factores Sexuales , Resistencia Vascular , Riñón/irrigación sanguínea , Vasoconstricción , Circulación Renal , Arteria Renal , Trastornos de Estrés por Calor/fisiopatología , Presión Sanguínea/fisiología , Factores de Edad
5.
J Strength Cond Res ; 38(2): 290-296, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38258830

RESUMEN

ABSTRACT: Wheelock, CE, Stooks, J, Schwob, J, Hess, HW, Pryor, RR, and Hostler, D. Partial and complete fluid replacement maintains exercise performance in a warm environment following prolonged cold-water immersion. J Strength Cond Res 38(2): 290-296, 2024-Special warfare operators may be exposed to prolonged immersion before beginning a land-based mission. This immersion will result in substantial hypohydration because of diuresis. This study tested the hypothesis that both partial and full postimmersion rehydration would maintain performance during exercise in the heat. Seven men (23 ± 2 years; V̇o2max: 50.8 ± 5.3 ml·kg-1·min-1) completed a control trial (CON) without prior immersion and 3 immersion (18.0°C) trials without rehydration (NO) or with partial (HALF) or full (FULL) rehydration. After immersion, subjects completed a 60-minute weighted ruck march (20.4 kg; 5.6 kph) and a 15-minute intermittent exercise protocol (iEPT) in a warm environment (30.0°C and 50.0% relative humidity). The primary outcome was distance (km) covered during the iEPT. A priori statistical significance was set to p ≤ 0.05. Immersion resulted in 2.3 ± 0.4% loss of body mass in all immersion trials (p < 0.01). Distance covered during the first 13-minute interval run portion of iEPT was reduced in the NO rehydration trial (1.59 ± 0.18 km) compared with all other conditions (CON: 1.88 ± 0.18 km, p = 0.03; HALF: 1.80 ± 0.18 km, p < 0.01; FULL: 1.86 ± 0.28 km, p = 0.01). During the final 2 minutes of the iEPT, distance in the NO rehydration trial (0.31 ± 0.07 km) was reduced compared with the FULL rehydration trial (0.37 ± 0.07 km; p < 0.01) but not compared with CON (0.35 ± 0.07 km; p = 0.09) or HALF (0.35 ± 0.07 km; p = 0.08). Both partial and full postimmersion fluid replacement maintained intermittent exercise performance and should be applied as rehydration strategies.


Asunto(s)
Fluidoterapia , Inmersión , Masculino , Humanos , Ejercicio Físico , Calor , Agua
6.
Pediatr Res ; 95(1): 285-292, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37689774

RESUMEN

BACKGROUND: Kernicterus spectrum disorder (KSD) resulting from neonatal hyperbilirubinemia remains a common cause of cerebral palsy worldwide. This 12-month prospective cohort study followed neonates with hyperbilirubinemia to determine which clinical measures best predict KSD. METHODS: The study enrolled neonates ≥35 weeks gestation with total serum bilirubin (TSB) ≥ 20 mg/dl admitted to Aminu Kano Hospital, Nigeria. Clinical measures included brain MRI, TSB, modified bilirubin-induced neurologic dysfunction (BIND-M), Barry-Albright Dystonia scale (BAD), auditory brainstem response (ABR), and the modified KSD toolkit. MRI signal alteration of the globus pallidus was scored using the Hyperbilirubinemia Imaging Rating Tool (HIRT). RESULTS: Of 25 neonates enrolled, 13/25 completed 12-month follow-up and six developed KSD. Neonatal BIND-M ≥ 3 was 100% sensitive and 83% specific for KSD. Neonatal ABR was 83% specific and sensitive for KSD. Neonatal HIRT score of 2 was 67% sensitive and 75% specific for KSD; this increased to 100% specificity and sensitivity at 12 months. BAD ≥ 2 was 100% specific for KSD at 3-12 months, with 50-100% sensitivity. CONCLUSIONS: Neonatal MRIs do not reliably predict KSD. BIND-M is an excellent screening tool for KSD, while the BAD or HIRT score at 3 or 12 months can confirm KSD, allowing for early diagnosis and intervention. IMPACT: The first prospective study of children with acute bilirubin encephalopathy evaluating brain MRI findings over the first year of life. Neonatal MRI is not a reliable predictor of kernicterus spectrum disorders (KSD). Brain MRI at 3 or 12 months can confirm KSD. The modified BIND scale obtained at admission for neonatal hyperbilirubinemia is a valuable screening tool to assess risk for developing KSD. The Barry Albright Dystonia scale and brain MRI can be used to establish a diagnosis of KSD in at-risk infants as early as 3 months.


Asunto(s)
Distonía , Hiperbilirrubinemia Neonatal , Kernicterus , Recién Nacido , Lactante , Niño , Humanos , Kernicterus/etiología , Estudios Prospectivos , Distonía/complicaciones , Nigeria , Hiperbilirrubinemia Neonatal/diagnóstico , Bilirrubina
7.
Undersea Hyperb Med ; 50(4): 359-372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055876

RESUMEN

Background: We tested the hypotheses that self-paced aerobic exercise performance is reduced following four hours of cold-water immersion when breathing air and further reduced when breathing 100% oxygen (O2). Nine healthy adults (four women; age 24 ± 3 years; body fat 17.9 ± 6.4%; VO2max 48±9 mL • kg • minute⁻¹) completed three visits: a no-immersion control trial and two experimental trials consisting of a four-hour cold-water immersion (20.1±0.3°C) either breathing air (FIO2 = 0.21) or O2 (FIO2 = 1.0). During the no-immersion control trial and following immersion in the experimental trials, subjects first completed a 60-minute ruck-march carrying 20% of body mass in a rucksack, immediately followed by an unweighted, self-paced 5-km time trial on a motorized treadmill. Core temperature, heart rate, and rating of perceived exertion were recorded every 1,000 meters during the 5-km time trial. Data are presented mean± SD. Time trial performance was reduced following immersion in both the 100% O2 trial (32±6 minutes; p=0.01) and air trial (32±5 minutes; p=0.01) compared to the control trial (28± 4 minutes). However, there was no difference between the 100% O2 and air trials (p=0.86). Heart rate, core temperature, and rating of perceived exertion increased during the time trial (time effect: p≺0.01), but were not different between trials (trial effect: p≥0.33). These findings suggest that prolonged cold-water immersion attenuates self-paced aerobic exercise performance, but does not appear to be further affected by breathing gas type.


Asunto(s)
Frío , Inmersión , Adulto , Femenino , Humanos , Adulto Joven , Temperatura Corporal/fisiología , Ejercicio Físico/fisiología , Oxígeno , Agua , Masculino
9.
Mil Med ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37776545

RESUMEN

INTRODUCTION: We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate-electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume (PV) and exercise performance compared to water (H2O) after immersion diuresis. METHODS: Twelve men (24 ± 2 years; 82.4 ± 15.5 kg; and V̇O2max: 49.8 ± 5.1 mL · kg-1 · min-1) completed four experimental visits: a no-immersion control (CON) and three 4-h cold-water (18.0 °C) immersion trials (H2O, CHO, and CHO + E) followed by exercise in a warm environment (30 °C, 50% relative humidity). The exercise was a 60-minute loaded march (20.4 kg; 55% VO2max) followed by a 10-minute intermittent running protocol. After immersion, subjects were rehydrated with 100% of body mass loss from immersion diuresis during the ruck march. PV is reported as a percent change after immersion, after the ruck march, and after the intermittent running protocol. The intermittent running protocol distance provided an index of exercise performance. Data are reported as mean ± SD. RESULTS: After immersion, body mass loss was 2.3 ± 0.7%, 2.3 ± 0.5%, and 2.3 ± 0.6% for H2O, CHO, and CHO + E. PV loss after immersion was 19.8 ± 8.5% in H2O, 18.2 ± 7.0% in CHO, and 13.9 ± 9.3% in CHO + E, which was reduced after the ruck march to 14.7 ± 4.7% (P = .13) in H2O, 8.8 ± 8.3% (P < .01) in CHO, and 4.4 ± 10.9% (P = .02) in CHO + E. The intermittent running protocol distance was 1.4 ± 0.1 km in CON, 1.4 ± 0.2 km in H2O, 1.4 ± 0.1 km in CHO, and 1.4 ± 0.2 km in CHO + E (P = .28). CONCLUSIONS: Although CHO and CHO + E better restored PV after immersion, post-immersion exercise performance was not augmented compared to H2O, highlighting that fluid replacement following immersion diuresis should focus on restoring volume lost rather than fluid constituents.

10.
J Med Econ ; 26(1): 760-768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37249124

RESUMEN

OBJECTIVE: This study aimed to determine the potential cost-savings for implementing continuous vital sign monitoring in a hospital's medical-surgical units. METHODS: A cost-savings analysis was designed to calculate potential cost-savings for an average-sized U.S. community hospital (153 total beds) over a 1-year time horizon. Analysis parameters were extracted from national databases and previous studies that compared outcomes for patients receiving continuous vital sign monitoring (SpO2, HR, and RR) or standard of care (intermittent vital sign measurements) in medical-surgical units based on a targeted literature review. Clinical parameters and associated costs served as analysis inputs. The analysis outputs were costs and potential cost-savings using a 50% and 100% adoption rate of continuous monitoring technologies across the medical-surgical unit. RESULTS: Potential annual cost-savings for in-hospital medical-surgical stays were estimated at $3,414,709 (2022 USD) and $6,829,418 for a 50% and 100% adoption rate, respectively. The cost-savings for an adoption rate of 100% equated to a ∼14% reduction in the overall annual cost of medical-surgical unit stays for an average-sized hospital. The largest contribution to potential cost-savings came from patients that avoided serious adverse events that require transfer to the intensive care unit; this resulted in annual cost-savings from reduced average length of stay between $1,756,613 and $3,513,226 (50% and 100% adoption rate, respectively). Additional cost-savings can be attained from reductions in in-hospital cardiac arrest-associated hospitalizations and decreased rapid response team activation. CONCLUSIONS: Our findings demonstrate that there is the potential for cost-savings of over $6.8 million dollars per year in an average-sized US community hospital by improving patient outcomes through implementation of continuous monitoring technologies in medical-surgical units. Continuous vital sign monitoring technologies that increase patient mobility and facilitate recovery may further contribute to cost-savings and should be considered for economic analyses. Future research is needed to explore these health-related outcomes.


Asunto(s)
Hospitalización , Unidades de Cuidados Intensivos , Humanos , Ahorro de Costo/métodos , Tiempo de Internación , Signos Vitales
11.
J Appl Physiol (1985) ; 134(6): 1364-1375, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37055036

RESUMEN

Renal ischemia-reperfusion (I/R) injury results in damage to the renal tubules and causes impairments in sodium [Na+] reabsorption. Given the inability to conduct mechanistic renal I/R injury studies in vivo in humans, eccrine sweat glands have been proposed as a surrogate model given the anatomical and physiological similarities. We tested the hypothesis that sweat Na+ concentration is elevated following I/R injury during passive heat stress. We also tested the hypothesis that I/R injury during heat stress will impair cutaneous microvascular function. Fifteen young healthy adults completed ∼160 min of passive heat stress using a water-perfused suit (50°C). At 60 min of whole body heating, one upper arm was occluded for 20 min followed by a 20-min reperfusion. Sweat was collected from each forearm via an absorbent patch pre- and post-I/R. Following the 20-min reperfusion, cutaneous microvascular function was measured via local heating protocol. Cutaneous vascular conductance (CVC) was calculated as red blood cell flux/mean arterial pressure and normalized to CVC during local heating to 44°C. Na+ concentration was log-transformed and data were reported as a mean change from pre-I/R (95% confidence interval). Changes in sweat sodium concentration from pre-I/R differed between arms post-I/R (experimental arm: +0.97 [+0.67 - 1.27] [LOG] Na+; control arm: +0.68 [+0.38 - 0.99] [LOG] Na+; P < 0.01). However, CVC during the local heating was not different between the experimental (80 ± 10%max) and control arms (78 ± 10%max; P = 0.59). In support of our hypothesis, Na+ concentration was elevated following I/R injury, but likely not accompanied by alterations in cutaneous microvascular function.NEW & NOTEWORTHY In the present study, we have demonstrated that sweat sodium concentration is elevated following ischemia-reperfusion injury during passive heat stress. This does not appear to be mediated by reductions in cutaneous microvascular function or active sweat glands, but may be related to alterations in local sweating responses during heat stress. This study demonstrates a potential use of eccrine sweat glands to understand sodium handling following ischemia-reperfusion injury, particularly given the challenges of in vivo studies of renal ischemia-reperfusion injury in humans.


Asunto(s)
Daño por Reperfusión , Piel , Adulto , Humanos , Piel/irrigación sanguínea , Sudor/fisiología , Vasodilatación/fisiología , Sudoración , Respuesta al Choque Térmico/fisiología , Sodio , Calor
12.
Neurobiol Aging ; 122: 65-75, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36508896

RESUMEN

Primary progressive aphasia (PPA) is comprised of three subtypes: logopenic (lvPPA), non-fluent (nfvPPA), and semantic (svPPA). We used magnetic resonance spectroscopy (MRS) to measure tissue-corrected metabolite levels in the left inferior frontal gyrus (IFG) and right sensorimotor cortex (SMC) from 61 PPA patients. We aimed to: (1) characterize subtype differences in metabolites; and (2) test for metabolite associations with symptom severity. tCr differed by subtype across the left IFG and right SMC. tCr levels were lowest in lvPPA and highest in svPPA. tCr levels predicted lvPPA versus svPPA diagnosis. Higher IFG tCr and lower Glx correlated with greater disease severity. As tCr is involved in brain energy metabolism, svPPA pathology might involve changes in specific cellular energy processes. Perturbations to cellular energy homeostasis in language areas may contribute to symptoms. Reduced cortical excitatory capacity (i.e. lower Glx) in language regions may also contribute to symptoms. Thus, tCr may be useful for differentiating between PPA subtypes, and both tCr and Glx might have utility in understanding PPA mechanisms and tracking progression.


Asunto(s)
Afasia Progresiva Primaria , Humanos , Afasia Progresiva Primaria/diagnóstico por imagen , Afasia Progresiva Primaria/patología , Creatina , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Gravedad del Paciente , Receptores de Antígenos de Linfocitos T
13.
Cells ; 11(24)2022 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-36552769

RESUMEN

Intensive care unit (ICU)-acquired weakness is a frequent consequence of critical illness that impacts both the limb and respiratory muscles. The cause of ICU-acquired weakness is multifactorial, but both prolonged limb muscle inactivity and mechanical ventilation are risk factors for muscle wasting, which predisposes ICU patients to both short-term complications and long-term disabilities resulting from muscle weakness. Unfortunately, the current research does not provide a detailed understanding of the cellular etiology of ICU-acquired weakness, and no standard treatment exists. Therefore, improving knowledge of the mechanisms promoting muscle atrophy in critically ill patients is essential to developing therapeutic strategies to protect against ICU-induced skeletal muscle wasting. To advance our understanding of the mechanism(s) responsible for ICU-acquired weakness, we tested the hypothesis that ICU-induced muscle inactivity promotes a rapid decrease in anabolic signaling/protein synthesis and accelerates proteolysis in both limb and respiratory muscles. To investigate ICU-induced changes in skeletal muscle proteostasis, adult Sprague Dawley rats were anesthetized and mechanically ventilated for 12 h to simulate ICU care. Measurements of anabolic signaling, protein synthesis, and proteolytic activity in the limb muscles (plantaris and soleus) and respiratory muscles (parasternal and intercostal) revealed ICU-induced reductions in both anabolic signaling (i.e., AKT/mTOR pathway) and muscle protein synthesis. Moreover, simulated ICU care resulted in increased biomarkers of accelerated proteolysis in both limb and respiratory muscles. These novel findings reveal that disturbances in limb and respiratory muscle proteostasis occur rapidly during ICU-induced muscle inactivity, irrespective of the muscle function or muscle fiber type.


Asunto(s)
Músculo Esquelético , Proteostasis , Ratas , Animales , Ratas Sprague-Dawley , Músculo Esquelético/metabolismo , Debilidad Muscular , Unidades de Cuidados Intensivos , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Enfermedad Crítica
14.
Temperature (Austin) ; 9(3): 292-302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211944

RESUMEN

Government entities issue recommendations that aim to maintain core temperature below 38.0°C and prevent dehydration [>2% body mass loss] in unacclimated workers exposed to heat. Hydration recommendations suggest drinking 237 mL of a cool sport drink every 15-20 min. This is based on the premise that ad libitum drinking results in dehydration due to inadequate fluid replacement, but this has never been examined in the background of recommendation compliant work in the heat. Therefore, we tested the hypothesis that ad libitum drinking results in >2% body mass loss during heat stress recommendation compliant work. Ten subjects completed four trials consisting of 4 hours of exposure to wet bulb globe temperatures (WBGT) of 24.1 ± 0.3°C (A), 26.6 ± 0.2°C (B), 28.5 ± 0.2°C (C), 29.3 ± 0.6°C (D). Subjects walked on a treadmill and work-rest ratios were prescribed as a function of WBGT [work:rest per hour - A: 60:0, B: 45:15, C: 30:30, D: 15:45] and were provided 237 mL of a cool sport drink every 15 min to drink ad libitum. Mean core temperature was higher in Trial A (37.8 ± 0.4°C; p = 0.03) and Trial B (37.6 ± 0.3°C; p = 0.01) versus Trial D (37.3 ± 0.3°C) but did not differ between the other trials (p ≥ 0.20). Body mass loss (A: -0.9 ± 0.7%, B: -0.7 ± 0.5%, C: -0.3 ± 0.5%, D: -0.4 ± 0.6%) was greater in Trial A compared to Trial D (p = 0.04) and was different from 2% body mass loss in all trials (p ≤ 0.01). Ad libitum drinking during recommendation compliant work in the heat rarely resulted in dehydration. Registered Clinical Trial (NCT04767347).

15.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R776-R786, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121146

RESUMEN

This study tested the hypotheses that 1) spleen volume increases during head-out-of-water immersion (HOWI) and returns to pre-HOWI values postdiuresis, and 2) the magnitude of apnea-induced spleen contraction increases when preapnea spleen volume is elevated. Spleen volume was measured before and after a set of five apneas in 12 healthy adults (28 ± 5 yr, 3 females) before, during (at 30 and 150 min), and 20 min after temperate temperature (36 ± 1°C) HOWI. At each time point, spleen length, width, and thickness were measured via ultrasound, and spleen volume was calculated using the Pilström equation. Compared with pre-HOWI (276 ± 88 mL), spleen volume was elevated at 30 (353 ± 94 mL, P < 0.01) and 150 (322 ± 87 mL, P < 0.01) min of HOWI but returned to pre-HOWI volume at post-HOWI (281 ± 90 mL, P = 0.58). Spleen volume decreased from pre- to postapnea bouts at each time point (P < 0.01). The magnitude of reduction in spleen volume from pre- to postapneas was elevated at 30 min of HOWI (-69 ± 24 mL) compared with pre-HOWI (-52 ± 20 mL, P = 0.04) but did not differ from pre-HOWI at 150 min of HOWI (-54 ± 16 mL, P = 0.99) and post-HOWI (-50 ± 18 mL, P = 0.87). Thus, spleen volume is increased throughout 180 min of HOWI, and whereas apnea-induced spleen contraction is augmented after 30 min of HOWI, the magnitude of spleen contraction is unaffected by HOWI thereafter.


Asunto(s)
Apnea , Bazo , Humanos , Adulto , Femenino , Agua , Presión Sanguínea/fisiología , Inmersión
16.
Microbiol Resour Announc ; 11(9): e0045522, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35976008

RESUMEN

Bacteriophages are important in structuring bacterial communities, including desert soils dominated by Bacillus species. Here, we describe two genetically similar temperate phages isolated on a Bacillus subtilis strain from soil in Tucson, Arizona. Their double-stranded DNA (dsDNA) genomes contain 98 and 102 genes, with a set of 4 genes being found in only one phage.

17.
Am J Physiol Regul Integr Comp Physiol ; 323(3): R340-R350, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816723

RESUMEN

We tested the hypothesis that, compared with normothermia, the increase in glomerular filtration rate (GFR) after an oral protein load (defined as the GFR reserve) is attenuated during moderate passive heat stress in young healthy adults. Sixteen participants (5 women; 26 ± 2 yr) completed two experimental visits, heat stress or a normothermic time-control, assigned in a block-randomized crossover design. During the heat stress trial, core temperature was increased by 0.6°C in the first hour before commencing a 2-min cold pressor test (CPT) to assess renal vasoconstrictor responses. One-hour post-CPT, subjects ingested a whey protein shake (1.2 g of protein/kg body wt), and measurements were taken pre-, 75, and 150 min postprotein. Segmental artery vascular resistance was calculated as the quotient of Doppler ultrasound-derived segmental artery blood velocity and mean arterial pressure and provided an estimate of renal vascular tone. GFR was estimated from creatinine clearance. The increase in segmental artery vascular resistance during the CPT was attenuated during heat stress (end CPT: 5.6 ± 0.9 vs. 4.7 ± 1.1 mmHg/cm/s, P = 0.024). However, the reduction in segmental artery vascular resistance in response to an oral protein load did not differ between heat stress (at 150 min: 1.9 ± 0.4 mmHg/cm/s) and normothermia (at 150 min: 1.8 ± 0.5 mmHg/cm/s; P = 0.979). The peak increase in creatinine clearance postprotein, independent of time, was attenuated during heat stress (+26 ± 19 vs. +16 ± 20 mL/min, P = 0.013, n = 13). GFR reserve is diminished by mild passive heat stress. Moreover, renal vasoconstrictor responses are attenuated by mild passive heat stress, but renal vasodilator responses are maintained.


Asunto(s)
Trastornos de Estrés por Calor , Creatinina , Estudios Cruzados , Femenino , Tasa de Filtración Glomerular , Respuesta al Choque Térmico/fisiología , Humanos , Vasoconstrictores , Adulto Joven
18.
J Appl Physiol (1985) ; 133(1): 27-40, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35616302

RESUMEN

Wet bulb temperatures (Twet) during extreme heat events are commonly 31°C. Recent predictions indicate that Twet will approach or exceed 34°C. Epidemiological data indicate that exposure to extreme heat events increases kidney injury risk. We tested the hypothesis that kidney injury risk is elevated to a greater extent during prolonged exposure to Twet = 34°C compared with Twet = 31°C. Fifteen healthy men rested for 8 h in Twet = 31 (0)°C and Twet = 34 (0)°C. Insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor of metalloproteinase 2 (TIMP-2), and thioredoxin 1 (TRX-1) were measured from urine samples. The primary outcome was the product of IGFBP7 and TIMP-2 ([IGFBP7·TIMP-2]), which provided an index of kidney injury risk. Plasma interleukin-17a (IL-17a) was also measured. Data are presented at preexposure and after 8 h of exposure and as mean (SD) change from preexposure. The increase in [IGFBP7·TIMP-2] was markedly greater at 8 h in the 34°C [+26.9 (27.1) (ng/mL)2/1,000) compared with the 31°C [+6.2 (6.5) (ng/mL)2/1,000] trial (P < 0.01). Urine TRX-1, a marker of renal oxidative stress, was higher at 8 h in the 34°C [+77.6 (47.5) ng/min] compared with the 31°C [+16.2 (25.1) ng/min] trial (P < 0.01). Plasma IL-17a, an inflammatory marker, was elevated at 8 h in the 34°C [+199.3 (90.0) fg/dL; P < 0.01] compared with the 31°C [+9.0 (95.7) fg/dL] trial. Kidney injury risk is exacerbated during prolonged resting exposures to Twet experienced during future extreme heat events (34°C) compared with that experienced currently (31°C), likely because of oxidative stress and inflammatory processes.NEW AND NOTEWORTHY We have demonstrated that kidney injury risk is increased when men are exposed over an 8-h period to a wet bulb temperature of 31°C and exacerbated at a wet bulb temperature of 34°C. Importantly, these heat stress conditions parallel those that are encountered during current (31°C) and future (34°C) extreme heat events. The kidney injury biomarker analyses indicate both the proximal and distal tubules as the locations of potential renal injury and that the injury is likely due to oxidative stress and inflammation.


Asunto(s)
Lesión Renal Aguda , Calor Extremo , Lesión Renal Aguda/etiología , Biomarcadores , Humanos , Interleucina-17 , Riñón , Masculino , Temperatura , Inhibidor Tisular de Metaloproteinasa-2/orina
19.
Cells ; 11(6)2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35326479

RESUMEN

Mechanical ventilation (MV) is a clinical tool that provides respiratory support to patients unable to maintain adequate alveolar ventilation on their own. Although MV is often a life-saving intervention in critically ill patients, an undesired side-effect of prolonged MV is the rapid occurrence of diaphragmatic atrophy due to accelerated proteolysis and depressed protein synthesis. Investigations into the mechanism(s) responsible for MV-induced diaphragmatic atrophy reveal that activation of the calcium-activated protease, calpain, plays a key role in accelerating proteolysis in diaphragm muscle fibers. Moreover, active calpain has been reported to block signaling events that promote protein synthesis (i.e., inhibition of mammalian target of rapamycin (mTOR) activation). While this finding suggests that active calpain can depress muscle protein synthesis, this postulate has not been experimentally verified. Therefore, we tested the hypothesis that active calpain plays a key role in the MV-induced depression of both anabolic signaling events and protein synthesis in the diaphragm muscle. MV-induced activation of calpain in diaphragm muscle fibers was prevented by transgene overexpression of calpastatin, an endogenous inhibitor of calpain. Our findings indicate that overexpression of calpastatin averts MV-induced activation of calpain in diaphragm fibers and rescues the MV-induced depression of protein synthesis in the diaphragm muscle. Surprisingly, deterrence of calpain activation did not impede the MV-induced inhibition of key anabolic signaling events including mTOR activation. However, blockade of calpain activation prevented the calpain-induced cleavage of glutaminyl-tRNA synthetase in diaphragm fibers; this finding is potentially important because aminoacyl-tRNA synthetases play a central role in protein synthesis. Regardless of the mechanism(s) responsible for calpain's depression of protein synthesis, these results provide the first evidence that active calpain plays an important role in promoting the MV-induced depression of protein synthesis within diaphragm fibers.


Asunto(s)
Calpaína , Diafragma , Atrofia/patología , Calpaína/metabolismo , Diafragma/metabolismo , Humanos , Respiración Artificial/efectos adversos , Serina-Treonina Quinasas TOR/metabolismo
20.
Undersea Hyperb Med ; 48(4): 469-476, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34847312

RESUMEN

Exposure to a reduction in ambient pressure such as in high-altitude climbing, flying in aircrafts, and decompression from underwater diving results in circulating vascular gas bubbles (i.e., venous gas emboli [VGE]). Incidence and severity of VGE, in part, can objectively quantify decompression stress and risk of decompression sickness (DCS) which is typically mitigated by adherence to decompression schedules. However, dives conducted at altitude challenge recommendations for decompression schedules which are limited to exposures of 10,000 feet in the U.S. Navy Diving Manual (Rev. 7). Therefore, in an ancillary analysis within a larger study, we assessed the evolution of VGE for two hours post-dive using echocardiography following simulated altitude dives at 12,000 feet. Ten divers completed two dives to 66 fsw (equivalent to 110 fsw at sea level by the Cross correction method) for 30 minutes in a hyperbaric chamber. All dives were completed following a 60-minute exposure at 12,000 feet. Following the dive, the chamber was decompressed back to altitude for two hours. Echocardiograph measurements were performed every 20 minutes post-dive. Bubbles were counted and graded using the Germonpré and Eftedal and Brubakk method, respectively. No diver presented with symptoms of DCS following the dive or two hours post-dive at altitude. Despite inter- and intra-diver variability of VGE grade following the dives, the majority (11/20 dives) presented a peak VGE Grade 0, three VGE Grade 1, one VGE Grade 2, four VGE Grade 3, and one VGE Grade 4. Using the Cross correction method for a 66-fsw dive at 12,000 feet of altitude resulted in a relatively low decompression stress and no cases of DCS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA