Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 383(6683): 589-590, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38330113

RESUMEN

Plants measure the duration of metabolic activity to promote rapid growth in long days.


Asunto(s)
Arabidopsis , Fotoperiodo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Redes y Vías Metabólicas
2.
Curr Opin Plant Biol ; 73: 102333, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36640635

RESUMEN

Plants must match their metabolism to daily and seasonal fluctuations in their environment to maximise performance in natural conditions. Circadian clocks enable organisms to anticipate and adapt to these predictable and unpredictable environmental challenges. Metabolism is increasingly recognised as an integrated feature of the plant circadian system. Metabolism is an important circadian-regulated output but also provides input to this dynamic timekeeping mechanism. The spatial organisation of metabolism within cells and between tissues, and the temporal features of metabolism across days, seasons and development, raise interesting questions about how metabolism influences circadian timekeeping. The various mechanisms by which metabolic signals influence the transcription-translation feedback loops of the circadian oscillator are emerging. These include roles for major metabolic signalling pathways, various retrograde signals, and direct metabolic modifications of clock genes or proteins. Such metabolic feedback loops enable intra- and intercellular coordination of rhythmic metabolism, and recent discoveries indicate these contribute to diverse aspects of daily, developmental and seasonal timekeeping.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Transducción de Señal
4.
New Phytol ; 236(3): 1027-1041, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35842791

RESUMEN

Sugars are essential metabolites for energy and anabolism that can also act as signals to regulate plant physiology and development. Experimental tools to disrupt major sugar signalling pathways are limited. We performed a chemical screen for modifiers of activation of circadian gene expression by sugars to discover pharmacological tools to investigate and manipulate plant sugar signalling. Using a library of commercially available bioactive compounds, we identified 75 confident hits that modified the response of a circadian luciferase reporter to sucrose in dark-adapted Arabidopsis thaliana seedlings. We validated the transcriptional effect on a subset of the hits and measured their effects on a range of sugar-dependent phenotypes for 13 of these chemicals. Chemicals were identified that appear to influence known and unknown sugar signalling pathways. Pentamidine isethionate was identified as a modifier of a sugar-activated Ca2+ signal that acts as a calmodulin inhibitor downstream of superoxide in a metabolic signalling pathway affecting circadian rhythms, primary metabolism and plant growth. Our data provide a resource of new experimental tools to manipulate plant sugar signalling and identify novel components of these pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/metabolismo , Carbohidratos/farmacología , Ritmo Circadiano/fisiología , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Pentamidina/metabolismo , Pentamidina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , Superóxidos/metabolismo
5.
Methods Mol Biol ; 2398: 57-64, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34674167

RESUMEN

Circadian clocks are endogenous timing mechanisms that allow an organism to adapt cellular processes in anticipation of predictable changes in the environment. Luciferase reporters are well utilized as an effective, nondestructive method to measure circadian rhythms of promoter activity in Arabidopsis. Obtaining stable transgenic reporter lines can be laborious. Here, we report a protocol for Agrobacterium-mediated seedling transformation tailored for plant circadian studies. We show that period estimates generated from wild-type and clock-mutant seedlings transformed with circadian luciferase reporters are similar to rhythms obtained from equivalent stable transgenic seedlings. These experiments demonstrate the versatility and robustness of the protocol for testing new constructs or quickly assessing circadian effects in any genotype of interest.


Asunto(s)
Arabidopsis , Relojes Circadianos , Ritmo Circadiano , Agrobacterium/genética , Agrobacterium/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Luciferasas/genética , Plantones/genética , Plantones/metabolismo
6.
Plant J ; 109(4): 992-1013, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34839543

RESUMEN

IRON-REGULATED TRANSPORTER1 (IRT1) is the root high-affinity ferrous iron (Fe) uptake system and indispensable for the completion of the life cycle of Arabidopsis thaliana without vigorous Fe supplementation. Here we provide evidence supporting a second role of IRT1 in root-to-shoot partitioning of Fe. We show that irt1 mutants overaccumulate Fe in roots, most prominently in the cortex of the differentiation zone in irt1-2, compared to the wild type. Shoots of irt1-2 are severely Fe-deficient according to Fe content and marker transcripts, as expected. We generated irt1-2 lines producing IRT1 mutant variants carrying single amino-acid substitutions of key residues in transmembrane helices IV and V, Ser206 and His232, which are required for transport activity in yeast. Root short-term 55 Fe uptake rates were uninformative concerning IRT1-mediated transport. Overall irt1-like concentrations of the secondary substrate Mn suggested that the transgenic Arabidopsis lines also remain incapable of IRT1-mediated root Fe uptake. Yet, IRT1S206A partially complements rosette dwarfing and leaf chlorosis of irt1-2, as well as root-to-shoot Fe partitioning and gene expression defects of irt1-2, all of which are fully complemented by wild-type IRT1. Taken together, these results suggest a regulatory function for IRT1 in root-to-shoot Fe partitioning that does not require Fe transport activity of IRT1. Among the genes of which transcript levels are partially dependent on IRT1, we identify MYB DOMAIN PROTEIN10, MYB DOMAIN PROTEIN72 and NICOTIANAMINE SYNTHASE4 as candidates for effecting IRT1-dependent Fe mobilization in roots. Understanding the biological functions of IRT1 will help to improve Fe nutrition and the nutritional quality of agricultural crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Compuestos Ferrosos/metabolismo , Proteínas Reguladoras del Hierro/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte de Catión/genética , Diferenciación Celular , Regulación de la Expresión Génica de las Plantas , Homeostasis , Proteínas Reguladoras del Hierro/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/citología , Brotes de la Planta/citología , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33674383

RESUMEN

Plants must coordinate photosynthetic metabolism with the daily environment and adapt rhythmic physiology and development to match carbon availability. Circadian clocks drive biological rhythms which adjust to environmental cues. Products of photosynthetic metabolism, including sugars and reactive oxygen species (ROS), are closely associated with the plant circadian clock, and sugars have been shown to provide metabolic feedback to the circadian oscillator. Here, we report a comprehensive sugar-regulated transcriptome of Arabidopsis and identify genes associated with redox and ROS processes as a prominent feature of the transcriptional response. We show that sucrose increases levels of superoxide (O2-), which is required for transcriptional and growth responses to sugar. We identify circadian rhythms of O2--regulated transcripts which are phased around dusk and find that O2- is required for sucrose to promote expression of TIMING OF CAB1 (TOC1) in the evening. Our data reveal a role for O2- as a metabolic signal affecting transcriptional control of the circadian oscillator in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Ritmo Circadiano/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sacarosa/farmacología , Superóxidos/metabolismo , Arabidopsis/genética , Perfilación de la Expresión Génica
8.
Plant J ; 102(1): 187-198, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31692146

RESUMEN

In multicellular organisms different types of tissues have distinct gene expression profiles associated with specific function or structure of the cell. Quantification of gene expression in whole organs or whole organisms can give misleading information about levels or dynamics of expression in specific cell types. Tissue- or cell-specific analysis of gene expression has potential to enhance our understanding of gene regulation and interactions of cell signalling networks. The Arabidopsis circadian oscillator is a gene network which orchestrates rhythmic expression across the day/night cycle. There is heterogeneity between cell and tissue types of the composition and behaviour of the oscillator. In order to better understand the spatial and temporal patterns of gene expression, flexible tools are required. By combining a Gateway®-compatible split luciferase construct with a GAL4 GFP enhancer trap system, we describe a tissue-specific split luciferase assay for non-invasive detection of spatiotemporal gene expression in Arabidopsis. We demonstrate the utility of this enhancer trap-compatible split luciferase assay (ETSLA) system to investigate tissue-specific dynamics of circadian gene expression. We confirm spatial heterogeneity of circadian gene expression in Arabidopsis leaves and describe the resources available to investigate any gene of interest.


Asunto(s)
Arabidopsis/genética , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas/genética , Luciferasas , Regiones Promotoras Genéticas/genética , Arabidopsis/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiología , Marcadores Genéticos/genética , Técnicas Genéticas , Luciferasas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa
9.
Plant Cell ; 30(10): 2463-2479, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30150315

RESUMEN

Low bioavailable concentrations of the micronutrient zinc (Zn) limit agricultural production on 40% of cultivated land. Here, we demonstrate that plant acclimation to Zn deficiency involves systemic regulation. Physiological Zn deficiency of Arabidopsis thaliana shoots results in increased root transcript levels of the membrane transport protein-encoding genes METAL TRANSPORT PROTEIN2 (MTP2) and HEAVY METAL ATPASE2 (HMA2), which are unresponsive to the local Zn status of roots. MTP2 and HMA2 act additively in the partitioning of Zn from roots to shoots. Chimeric GFP fusion proteins of MTP2 complement an mtp2 mutant and localize in the endoplasmic reticulum (ER) membrane of the outer cell layers from elongation to root hair zone of lateral roots. MTP2 restores Zn tolerance in a hypersensitive yeast mutant. These results are consistent with cell-to-cell movement of Zn toward the root vasculature inside the ER-luminal continuum through the desmotubules of plasmodesmata, under Zn deficiency. The previously described Zn deficiency response comprises transcriptional activation of target genes, including ZINC-REGULATED TRANSPORTER IRON-REGULATED TRANSPORTER PROTEIN genes ZIP4 and ZIP9, by the F-group bZIP transcription factors bZIP19 and bZIP23. We show that ZIP4 and ZIP9 respond to the local Zn status in both roots and shoots, in contrast to the systemic regulation identified here. Our findings are relevant for crop management and improvement toward combating human nutritional Zn deficiency that affects 30 to 50% of the world's population.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Brotes de la Planta/metabolismo , Zinc/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Plantas Modificadas Genéticamente , Zinc/farmacología
10.
Curr Biol ; 28(16): 2597-2606.e6, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30078562

RESUMEN

Synchronization of circadian clocks to the day-night cycle ensures the correct timing of biological events. This entrainment process is essential to ensure that the phase of the circadian oscillator is synchronized with daily events within the environment [1], to permit accurate anticipation of environmental changes [2, 3]. Entrainment in plants requires phase changes in the circadian oscillator, through unidentified pathways, which alter circadian oscillator gene expression in response to light, temperature, and sugars [4-6]. To determine how circadian clocks respond to metabolic rhythms, we investigated the mechanisms by which sugars adjust the circadian phase in Arabidopsis [5]. We focused upon metabolic regulation because interactions occur between circadian oscillators and metabolism in several experimental systems [5, 7-9], but the molecular mechanisms are unidentified. Here, we demonstrate that the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63) regulates the circadian oscillator gene PSEUDO RESPONSE REGULATOR7 (PRR7) to change the circadian phase in response to sugars. We find that SnRK1, a sugar-sensing kinase that regulates bZIP63 activity and circadian period [10-14] is required for sucrose-induced changes in circadian phase. Furthermore, TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1), which synthesizes the signaling sugar trehalose-6-phosphate, is required for circadian phase adjustment in response to sucrose. We demonstrate that daily rhythms of energy availability can entrain the circadian oscillator through the function of bZIP63, TPS1, and the KIN10 subunit of the SnRK1 energy sensor. This identifies a molecular mechanism that adjusts the circadian phase in response to sugars.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Relojes Circadianos/genética , Proteínas Represoras/genética , Azúcares/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Sacarosa/metabolismo , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Trehalosa/metabolismo
11.
Plant Physiol ; 178(1): 358-371, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29997180

RESUMEN

Circadian clocks drive rhythms with a period near 24 h, but the molecular basis of the regulation of the period of the circadian clockis poorly understood. We previously demonstrated that metabolites affect the free-running period of the circadian oscillator of Arabidopsis (Arabidopsis thaliana), with endogenous sugars acting as an accelerator and exogenous nicotinamide acting as a brake. Changes in circadian oscillator period are thought to adjust the timing of biological activities through the process of entrainment, in which the circadian oscillator becomes synchronized to rhythmic signals such as light and dark cycles as well as changes in internal metabolism. To identify the molecular components associated with the dynamic adjustment of circadian period, we performed a forward genetic screen. We identified Arabidopsis mutants that were either period insensitive to nicotinamide (sin) or period oversensitive to nicotinamide (son). We mapped son1 to BIG, a gene of unknown molecular function that was shown previously to play a role in light signaling. We found that son1 has an early entrained phase, suggesting that the dynamic alteration of circadian period contributes to the correct timing of biological events. Our data provide insight into how the dynamic period adjustment of circadian oscillators contributes to establishing a correct phase relationship with the environment and show that BIG is involved in this process.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión a Calmodulina/genética , Relojes Circadianos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Luz , Plantas Modificadas Genéticamente
12.
Curr Biol ; 27(22): 3403-3418.e7, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29103938

RESUMEN

Etiolated growth in darkness or the irreversible transition to photomorphogenesis in the light engages alternative developmental programs operating across all organs of a plant seedling. Dark-grown Arabidopsis de-etiolated by zinc (dez) mutants exhibit morphological, cellular, metabolic, and transcriptional characteristics of light-grown seedlings. We identify the causal mutation in TRICHOME BIREFRINGENCE encoding a putative acyl transferase. Pectin acetylation is decreased in dez, as previously found in the reduced wall acetylation2-3 mutant, shown here to phenocopy dez. Moreover, pectin of dez is excessively methylesterified. The addition of very short fragments of homogalacturonan, tri-galacturonate, and tetra-galacturonate, restores skotomorphogenesis in dark-grown dez and similar mutants, suggesting that the mutants are unable to generate these de-methylesterified pectin fragments. In combination with genetic data, we propose a model of spatiotemporally separated photoreceptive and signal-responsive cell types, which contain overlapping subsets of the regulatory network of light-dependent seedling development and communicate via a pectin-derived dark signal.


Asunto(s)
Etiolado/genética , Fototransducción/genética , Acetiltransferasas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Oscuridad , Etiolado/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Fototransducción/fisiología , Morfogénesis/genética , Mutación , Pectinas/genética , Plantones/genética , Transducción de Señal , Tricomas/genética
13.
Plant Physiol ; 175(2): 947-958, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28778922

RESUMEN

Circadian clocks drive rhythmic physiology and metabolism to optimize plant growth and performance under daily environmental fluctuations caused by the rotation of the planet. Photosynthesis is a key metabolic process that must be appropriately timed to the light-dark cycle. The circadian clock contributes to the regulation of photosynthesis, and in turn the daily accumulation of sugars from photosynthesis also feeds back to regulate the circadian oscillator. We have previously shown that GIGANTEA (GI) is required to sustain Suc-dependent circadian rhythms in darkness. The mechanism by which Suc affects the circadian oscillator in a GI-dependent manner was unknown. Here, we identify that Suc sustains rhythms in the dark by stabilizing GI protein, dependent on the F-box protein ZEITLUPE, and implicate CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), a negative regulator of ethylene signaling. Our identification of a role for CTR1 in the response to Suc prompted a reinvestigation of the effects of ethylene on the circadian oscillator. We demonstrate that ethylene shortens the circadian period, conditional on the effects of Suc and requiring GI These findings reveal that Suc affects the stability of circadian oscillator proteins and can mask the effects of ethylene on the circadian system, identifying novel molecular pathways for input of sugar to the Arabidopsis (Arabidopsis thaliana) circadian network.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos , Etilenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Quinasas/metabolismo , Sacarosa/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Oscuridad , Luz , Fotosíntesis , Proteínas Quinasas/genética , Transducción de Señal
14.
Methods Mol Biol ; 1398: 133-40, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26867621

RESUMEN

Circadian clocks drive 24 h biological rhythms to optimize physiology and development in response to the rotation of the planet. In plants, photosynthesis is modulated by the circadian clock and contributes to daily rhythms in cellular metabolism. In addition to light and temperature, sugar produced from photosynthesis acts as a zeitgeber to contribute to setting of the plant circadian clock. Here, we describe methods to manipulate photosynthetic output and sugar availability in Arabidopsis seedlings. These protocols have been applied to investigate the effects on the Arabidopsis circadian network, but are easily adaptable to other processes in plants.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Fotosíntesis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Fotosíntesis/genética
15.
Front Plant Sci ; 6: 299, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25972889

RESUMEN

Circadian clocks have evolved to enhance adaptive physiology in the predictable, fluctuating environment caused by the rotation of the planet. Nutrient acquisition is central to plant growth performance and the nutrient demands of a plant change according to the time of day. Therefore, major aspects of nutrient homeostasis, including carbon assimilation and mineral uptake, are under circadian control. It is also emerging that there is feedback of nutritional status to the circadian clock to integrate these processes. This review will highlight recent insights into the role of the circadian clock in regulating plant nutrition as well as discuss the role for nutrients in affecting circadian function.

17.
Nature ; 502(7473): 689-92, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24153186

RESUMEN

Circadian clocks provide a competitive advantage in an environment that is heavily influenced by the rotation of the Earth, by driving daily rhythms in behaviour, physiology and metabolism in bacteria, fungi, plants and animals. Circadian clocks comprise transcription-translation feedback loops, which are entrained by environmental signals such as light and temperature to adjust the phase of rhythms to match the local environment. The production of sugars by photosynthesis is a key metabolic output of the circadian clock in plants. Here we show that these rhythmic, endogenous sugar signals can entrain circadian rhythms in Arabidopsis thaliana by regulating the gene expression of circadian clock components early in the photoperiod, thus defining a 'metabolic dawn'. By inhibiting photosynthesis, we demonstrate that endogenous oscillations in sugar levels provide metabolic feedback to the circadian oscillator through the morning-expressed gene PSEUDO-RESPONSE REGULATOR 7 (PRR7), and we identify that prr7 mutants are insensitive to the effects of sucrose on the circadian period. Thus, photosynthesis has a marked effect on the entrainment and maintenance of robust circadian rhythms in A. thaliana, demonstrating that metabolism has a crucial role in regulation of the circadian clock.


Asunto(s)
Arabidopsis/fisiología , Relojes Circadianos/fisiología , Fotosíntesis/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fotoperiodo , Fotosíntesis/efectos de la radiación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Sacarosa/metabolismo , Sacarosa/farmacología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de la radiación
18.
Semin Cell Dev Biol ; 24(5): 414-21, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23538134

RESUMEN

Circadian clocks are 24-h timekeeping mechanisms, which have evolved in plants, animals, fungi and bacteria to anticipate changes in light and temperature associated with the rotation of the Earth. The current paradigm to explain how biological clocks provide timing information is based on multiple interlocking transcription-translation negative feedback loops (TTFL), which drive rhythmic gene expression and circadian behaviour of growth and physiology. Metabolism is an important circadian output, which in plants includes photosynthesis, starch metabolism, nutrient assimilation and redox homeostasis. There is increasing evidence in a range of organisms that these metabolic outputs can also contribute to circadian timing and might also comprise independent circadian oscillators. In this review, we summarise the mechanisms of circadian regulation of metabolism by TTFL and consider increasing evidence that rhythmic metabolism contributes to the circadian network. We highlight how this might be relevant to plant circadian clock function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Metabolismo Energético , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas , ADP-Ribosil Ciclasa/genética , ADP-Ribosil Ciclasa/metabolismo , Proteínas de Arabidopsis/genética , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Biosíntesis de Proteínas , Transducción de Señal , Sirtuinas/genética , Sirtuinas/metabolismo , Sacarosa/metabolismo , Transcripción Genética
19.
Plant Cell ; 24(2): 724-37, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22374397

RESUMEN

The essential micronutrients Fe and Zn often limit plant growth but are toxic in excess. Arabidopsis thaliana ZINC-INDUCED FACILITATOR1 (ZIF1) is a vacuolar membrane major facilitator superfamily protein required for basal Zn tolerance. Here, we show that overexpression of ZIF1 enhances the partitioning into vacuoles of the low molecular mass metal chelator nicotianamine and leads to pronounced nicotianamine accumulation in roots, accompanied by vacuolar buildup of Zn. Heterologous ZIF1 protein localizes to vacuolar membranes and enhances nicotianamine contents of yeast cells engineered to synthesize nicotianamine, without complementing a Zn-hypersensitive mutant that additionally lacks vacuolar membrane Zn(2+)/H(+) antiport activity. Retention in roots of Zn, but not of Fe, is enhanced in ZIF1 overexpressors at the expense of the shoots. Furthermore, these lines exhibit impaired intercellular Fe movement in leaves and constitutive Fe deficiency symptoms, thus phenocopying nicotianamine biosynthesis mutants. Hence, perturbing the subcellular distribution of the chelator nicotianamine has profound, yet distinct, effects on Zn and Fe with respect to their subcellular and interorgan partitioning. The zif1 mutant is also hypersensitive to Fe deficiency, even in media lacking added Zn. Therefore, accurate levels of ZIF1 expression are critical for both Zn and Fe homeostasis. This will help to advance the biofortification of crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Hierro/metabolismo , Vacuolas/metabolismo , Zinc/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Azetidinocarboxílico/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Datos de Secuencia Molecular , Raíces de Plantas/metabolismo
20.
J Exp Bot ; 62(7): 2333-48, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21378117

RESUMEN

The Earth's rotation and its orbit around the Sun leads to continual changes in the environment. Many organisms, including plants and animals, have evolved circadian clocks that anticipate these changes in light, temperature, and seasons in order to optimize growth and physiology. Circadian timing is thought to derive from a molecular oscillator that is present in every plant cell. A central aspect of the circadian oscillator is the presence of transcription translation loops (TTLs) that provide negative feedback to generate circadian rhythms. This review examines the evidence that the 24 h circadian clocks of plants regulate the fluxes of solutes and how changes in solute concentrations can also provide feedback to modulate the behaviour of the molecular oscillator. It highlights recent advances that demonstrate interactions between components of TTLs and regulation of solute concentration and transport. How rhythmic control of water fluxes, ions such as K(+), metabolic solutes such as sucrose, micronutrients, and signalling molecules, including Ca(2+), might contribute to optimizing the physiology of the plant is discussed.


Asunto(s)
Relojes Circadianos , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Transporte Biológico , Iones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...