Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Infect Dis ; 23(1): 703, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858038

RESUMEN

BACKGROUND: Clostridioides difficile is a bacterium that causes antibiotic-associated infectious diarrhea and pseudomembranous enterocolitis. The impact of C. difficile infection (CDI) in China has gained significant attention in recent years. However, little epidemiological data are available from Chongqing, a city located in Southwest China. This study aimed to investigate the epidemiological pattern of CDI and explore the drug resistance of C. difficile isolates in Chongqing. METHODS: A case-control study was conducted to investigate the clinical infection characteristics and susceptibility factors of C. difficile. The features of the C. difficile isolates were evaluated by testing for toxin genes and using multi-locus sequence typing (MLST). The susceptibility of strains to nine antibiotics was determined using agar dilution technique. RESULTS: Out of 2084 diarrhea patients, 90 were tested positive for the isolation of toxigenic C. difficile strains, resulting in a CDI prevalence rate of 4.32%. Tetracycline, cephalosporins, hepatobiliary disease, and gastrointestinal disorders were identified as independent risk factors for CDI incidence. The 90 strains were classified into 21 sequence types (ST), with ST3 being the most frequent (n = 25, 27.78%), followed by ST2 (n = 10, 11.11%) and ST37 (n = 9, 10%). Three different toxin types were identified: 69 (76.67%) were A+B+CDT-, 12 (13.33%) were A-B+CDT-, and 9 (10%) were A+B+CDT+. Although substantial resistance to erythromycin (73.33%), moxifloxacin (62.22%), and clindamycin (82.22%), none of the isolates exhibited resistance to vancomycin, tigecycline, or metronidazole. Furthermore, different toxin types displayed varying anti-microbial characteristics. CONCLUSIONS: The strains identified in Chongqing, Southwest China, exhibited high genetic diversity. Enhance full awareness of high-risk patients with HA-CDI infection, particularly those with gastrointestinal and hepatocellular diseases, and emphasize caution in the use of tetracycline and capecitabine. These findings suggest that a potential epidemic of CDI may occur in the future, emphasizing the need for timely monitoring.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Humanos , Clostridioides difficile/genética , Tipificación de Secuencias Multilocus , Clostridioides/genética , Centros de Atención Terciaria , Estudios de Casos y Controles , Infecciones por Clostridium/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tigeciclina , Tetraciclina , Diarrea/microbiología , China/epidemiología , Pruebas de Sensibilidad Microbiana
2.
Appl Environ Microbiol ; 89(10): e0060823, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37702501

RESUMEN

Lactiplantibacillus plantarum T1 is an isolated probiotic lactic acid bacterium (LAB) from pickled vegetables in Chongqing, China. In this study, we evaluated the anti-inflammatory activity and the underlying mechanisms of L. plantarum T1 cell-free supernatant (CFS) on lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophages in vitro. Reverse transcription quantitative PCR (RT-qPCR), immunofluorescence, Griess methods, and western blotting were utilized to assess the anti-inflammatory cytokines and antioxidative effect of L. plantarum T1 CFS. Our results showed that L. plantarum T1 CFS pretreatment significantly reduced pro-inflammatory cytokine levels, including nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor, interleukin (IL)-1ß, and IL-6, as well as reactive oxygen species. Interestingly, L. plantarum T1 CFS unregulated the antioxidant indicators, including superoxide dismutase, catalase, and glutathione in RAW264.7 cells. Furthermore, L. plantarum T1 CFS activated the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathway. This study showed the excellent antioxidant and anti-inflammatory properties of L. plantarum T1 through multiple pathways, highlighting its potential for further research and application as a probiotic strain.IMPORTANCEL. plantarum T1 stood out in a series of acid and bile salt tolerance and bacterial inhibition tests as a probiotic isolated from paocai, which provides many health benefits to the host by inhibiting the growth of harmful pathogenic microorganisms and suppressing excessive levels of oxidative stress and inflammation. Not all LAB have good probiotic functions and are used in various applications. The anti-inflammatory antioxidant potential and mechanisms of L. plantarum T1 CFS have not been described and reported. By using RT-qPCR, Griess method, and western blotting, we showed that L. plantarum T1 CFS had anti-inflammatory and antioxidant effects. Griess assay, TBA assay, WST-8 assay, immunofluorescence assay, RT-qPCR, and western blotting data revealed that its anti-inflammatory and antioxidant mechanisms were associated with oxidative stress and NF-κB and MAPK signaling pathways. The anti-inflammatory and antioxidant effects of L. plantarum T1 CFS in paocai generates opportunities for probiotic product development.


Asunto(s)
Antioxidantes , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Sistema de Señalización de MAP Quinasas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Células RAW 264.7 , Inflamación , Citocinas/metabolismo , Estrés Oxidativo , Lipopolisacáridos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/farmacología
3.
Front Microbiol ; 14: 1137701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152759

RESUMEN

Introduction: Probiotic is adjuvant therapy for traditional drug treatment of ulcerative colitis (UC). In the present study, Lactobacillus acidophilus C4 with high acid and bile salt resistance has been isolated and screened, and the beneficial effect of L. acidophilus C4 on Dextran Sulfate Sodium (DSS)-induced colitis in mice has been evaluated. Our data showed that oral administration of L. acidophilus C4 remarkably alleviated colitis symptoms in mice and minimized colon tissue damage. Methods: To elucidate the underlying mechanism, we have investigated the levels of inflammatory cytokines and intestinal tight junction (TJ) related proteins (occludin and ZO-1) in colon tissue, as well as the intestinal microbiota and short-chain fatty acids (SCFAs) in feces. Results: Compared to the DSS group, the inflammatory cytokines IL-1ß, IL-6, and TNF-α in L. acidophilus C4 group were reduced, while the antioxidant enzymes superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) were found to be elevated. In addition, proteins linked to TJ were elevated after L. acidophilus C4 intervention. Further study revealed that L. acidophilus C4 reversed the decrease in intestinal microbiota diversity caused by colitis and promoted the levels of SCFAs. Discussion: This study demonstrate that L. acidophilus C4 effectively alleviated DSS-induced colitis in mice by repairing the mucosal barrier and maintaining the intestinal microecological balance. L. acidophilus C4 could be of great potential for colitis therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA