Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 18(4): 756-771, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36988910

RESUMEN

Repetitive physical exercise induces physiological adaptations in skeletal muscle that improves exercise performance and is effective for the prevention and treatment of several diseases. Genetic evidence indicates that the orphan nuclear receptors estrogen receptor-related receptors (ERRs) play an important role in skeletal muscle exercise capacity. Three ERR subtypes exist (ERRα, ß, and γ), and although ERRß/γ agonists have been designed, there have been significant difficulties in designing compounds with ERRα agonist activity. Additionally, there are limited synthetic agonists that can be used to target ERRs in vivo. Here, we report the identification of a synthetic ERR pan agonist, SLU-PP-332, that targets all three ERRs but has the highest potency for ERRα. Additionally, SLU-PP-332 has sufficient pharmacokinetic properties to be used as an in vivo chemical tool. SLU-PP-332 increases mitochondrial function and cellular respiration in a skeletal muscle cell line. When administered to mice, SLU-PP-332 increased the type IIa oxidative skeletal muscle fibers and enhanced exercise endurance. We also observed that SLU-PP-332 induced an ERRα-specific acute aerobic exercise genetic program, and the ERRα activation was critical for enhancing exercise endurance in mice. These data indicate the feasibility of targeting ERRα for the development of compounds that act as exercise mimetics that may be effective in the treatment of numerous metabolic disorders and to improve muscle function in the aging.


Asunto(s)
Estrógenos , Tolerancia al Ejercicio , Receptores de Estrógenos , Animales , Ratones , Tolerancia al Ejercicio/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Receptores de Estrógenos/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Estrógenos/química , Estrógenos/farmacología , Receptor Relacionado con Estrógeno ERRalfa
2.
Org Lett ; 24(20): 3686-3690, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35584298

RESUMEN

Progress toward an asymmetric synthesis of euphanes is described. A C14-desmethyl euphane system possessing five differentially substituted and electronically distinct alkenes has been prepared. The route employed is based on sequential metallacycle-mediated annulative cross-coupling, double asymmetric Brønsted acid mediated intramolecular Friedel-Crafts alkylation, and an oxidative rearrangement to establish the requisite C10 quaternary center. These studies have also led to the discovery of a novel euphane-based modulator of the Liver X Receptor.


Asunto(s)
Ácidos , Alquenos , Alquilación , Oxidación-Reducción , Estereoisomerismo
3.
Acta Pharmacol Sin ; 43(5): 1133-1140, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35217816

RESUMEN

REV-ERBs are atypical nuclear receptors as they function as ligand-regulated transcriptional repressors. The natural ligand for the REV-ERBs (REV-ERBα and REV-ERBß) is heme, and heme-binding results in recruitment of transcriptional corepressor proteins such as N-CoR that mediates repression of REV-ERB target genes. These two receptors regulate a large range of physiological processes including several important in the pathophysiology of non-alcoholic steatohepatitis (NASH). These include carbohydrate and lipid metabolism as well as inflammatory pathways. A number of synthetic REV-ERB agonists have been developed as chemical tools and they show efficacy in animal models of NASH. Here, we will review the functions of REV-ERB with regard to their relevance to NASH as well as the potential to target REV-ERB for treatment of this disease.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Animales , Ritmo Circadiano/fisiología , Hemo/metabolismo , Ligandos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Factores de Transcripción/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(11): 5102-5107, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30792350

RESUMEN

Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα-/- mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα-/- mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα-/- microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Rev-erbα physically interacts with the promoter regions of several NF-κB-related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Rev-erbα-/- mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPS-induced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα-deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Rev-erbα-/- mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.


Asunto(s)
Relojes Circadianos , Inflamación/metabolismo , Inflamación/patología , Neuronas/metabolismo , Neuronas/patología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Muerte Celular , Eliminación de Gen , Gliosis/patología , Hipocampo/patología , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , FN-kappa B/metabolismo , Red Nerviosa/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/deficiencia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...