Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
3.
Sci Total Environ ; 656: 608-624, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30529965

RESUMEN

Statistically downscaled climate change scenarios from four General Circulation Models for two Representative Concentration Pathways (RCP) were applied as inputs to a biogeochemical model, PnET-BGC, to examine potential future dynamics of water, carbon, and nitrogen in an old-growth Douglas-fir forest in the western Cascade Range. Projections show 56% to 77% increases in stomatal conductance throughout the year from 1986-2010 to 2076-2100, and 65% to 104% increases in leaf carbon assimilation between October and June over the same period. However, future dynamics of water and carbon under the RCP scenarios are affected by a 49% to 86% reduction in foliar biomass resulting from severe air temperature and humidity stress to the forest in summer. Important implications of future decreases in foliar biomass include 1) 20% to 71% decreases in annual transpiration which increase soil moisture by 7% to 15% in summer and fall; 2) decreases in photosynthesis by 77% and soil organic matter by 62% under the high radiative forcing scenario; and 3) altered foliar and soil carbon to nitrogen stoichiometry. Potential carbon dioxide fertilization effects on vegetation are projected to 1) amplify decreases in transpiration by 4% to 9% and increases in soil moisture in summer and fall by 1% to 2%; and 2) alleviate decreases in photosynthesis by 4%; while 3) having negligible effects on the dynamics of nitrogen. Our projections suggest that future decrease in transpiration and moderate water holding capacity may mitigate soil moisture stress to the old-growth Douglas-fir forest. Future increases in nitrogen concentration in soil organic matter are projected to alleviate the decrease in net nitrogen mineralization despite a reduction in decomposition of soil organic matter by the end of the century.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Bosques , Ciclo del Nitrógeno , Pseudotsuga/fisiología , Ciclo Hidrológico , Modelos Teóricos , Oregon , Estrés Fisiológico
4.
Sci Total Environ ; 650(Pt 1): 1451-1464, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308832

RESUMEN

Using statistically downscaled future climate scenarios and a version of the biogeochemical model (PnET-BGC) that was modified for use in the alpine tundra, we investigated changes in water, carbon, and nitrogen dynamics under the Representative Concentration Pathways at Niwot Ridge in Colorado, USA. Our simulations indicate that future hydrology will become more water-limited over the short-term due to the temperature-induced increases in leaf conductance, but remains energy-limited over the longer term because of anticipated future decreases in leaf area and increases in annual precipitation. The seasonal distribution of the water supply will become decoupled from energy inputs due to advanced snowmelt, causing soil moisture stress to plants during the growing season. Decreases in summer soil moisture are projected to not only affect leaf production, but also reduce decomposition of soil organic matter in summer despite increasing temperature. Advanced future snowmelt in spring and increasing rain to snow ratio in fall are projected to increase soil moisture and decomposition of soil organic matter. The extended growing season is projected to increase carbon sequestration by 2% under the high radiative forcing scenario, despite a 31% reduction in leaf display due to the soil moisture stress. Our analyses demonstrate that future nitrogen uptake by alpine plants is regulated by nitrogen supply from mineralization, but plant nitrogen demand may also affect plant uptake under the warmer scenario. PnET-BGC simulations also suggest that potential CO2 effects on alpine plants are projected to cause larger increases in plant carbon storage than leaf and root production.


Asunto(s)
Carbono/análisis , Cambio Climático , Monitoreo del Ambiente/métodos , Modelos Teóricos , Nitrógeno/análisis , Tundra , Agua/análisis , Colorado
5.
Science ; 360(6392): 943, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29853662
6.
Oecologia ; 187(3): 839-849, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29767812

RESUMEN

The use of species distribution as a climate proxy for ecological forecasting is thought to be acceptable for invasive species. Kudzu (Pueraria montana var. lobata) is an important invasive whose northern distribution appears to be limited by winter survival; however, kudzu's cold tolerance thresholds are uncertain. Here, we used biogeographic evidence to hypothesize that exposure to - 20 °C is lethal for kudzu and thus determines its northern distribution limit. We evaluated this hypothesis using survival tests and electrolyte leakage to determine relative conductivity, a measure of cell damage, on 14 populations from eastern North America. Relative conductivity above 36% was lethal. Temperatures causing this damage averaged - 19.6 °C for northern and - 14.4 °C for southern populations, indicating kudzu acclimates to winter cold. To assess this, we measured relative conductivity of above- and belowground stems, and roots collected throughout the winter at a kudzu population in southern Ontario, Canada. Consistent with acclimation, the cold tolerance threshold of aboveground stems at the coldest time of year was - 26 °C, while stems insulated from cold extremes survived to - 17 °C-colder than the survival limits indicated by kudzu's biogeographic distribution. While these results do not rule out alternative cold limitations, they indicate kudzu can survive winters north of its current distribution. For kudzu, biogeography is not a proxy for climatic tolerance and continued northward migration is possible. Efforts to limit its spread are therefore prudent. These results demonstrate that physiological constraints inform predictions of climate-related changes in species distribution and should be considered where possible.


Asunto(s)
Pueraria , Aclimatación , Frío , Ontario , Estaciones del Año
7.
Glob Chang Biol ; 23(2): 840-856, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27472269

RESUMEN

A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern United States to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four atmosphere-ocean general circulation models (AOGCMs; CCSM4, HadGEM2-CC, MIROC5, and MRI-CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET-BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern United States are anticipated to increase evapotranspiration across all sites, although invoking CO2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce-fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snow packs, longer growing seasons, and associated water deficits. Considering future CO2 effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a challenge to water resource management in the northeastern United States. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrological responses to climate change.


Asunto(s)
Cambio Climático , Ríos , Suelo , Clima , Ecosistema , Bosques , New England , Plantas
8.
Ecol Appl ; 26(5): 1321-1337, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27755746

RESUMEN

Assessments of future climate change impacts on ecosystems typically rely on multiple climate model projections, but often utilize only one downscaling approach trained on one set of observations. Here, we explore the extent to which modeled biogeochemical responses to changing climate are affected by the selection of the climate downscaling method and training observations used at the montane landscape of the Hubbard Brook Experimental Forest, New Hampshire, USA. We evaluated three downscaling methods: the delta method (or the change factor method), monthly quantile mapping (Bias Correction-Spatial Disaggregation, or BCSD), and daily quantile regression (Asynchronous Regional Regression Model, or ARRM). Additionally, we trained outputs from four atmosphere-ocean general circulation models (AOGCMs) (CCSM3, HadCM3, PCM, and GFDL-CM2.1) driven by higher (A1fi) and lower (B1) future emissions scenarios on two sets of observations (1/8º resolution grid vs. individual weather station) to generate the high-resolution climate input for the forest biogeochemical model PnET-BGC (eight ensembles of six runs).The choice of downscaling approach and spatial resolution of the observations used to train the downscaling model impacted modeled soil moisture and streamflow, which in turn affected forest growth, net N mineralization, net soil nitrification, and stream chemistry. All three downscaling methods were highly sensitive to the observations used, resulting in projections that were significantly different between station-based and grid-based observations. The choice of downscaling method also slightly affected the results, however not as much as the choice of observations. Using spatially smoothed gridded observations and/or methods that do not resolve sub-monthly shifts in the distribution of temperature and/or precipitation can produce biased results in model applications run at greater temporal and/or spatial resolutions. These results underscore the importance of carefully considering field observations used for training, as well as the downscaling method used to generate climate change projections, for smaller-scale modeling studies. Different sources of variability including selection of AOGCM, emissions scenario, downscaling technique, and data used for training downscaling models, result in a wide range of projected forest ecosystem responses to future climate change.


Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente/métodos , Modelos Teóricos , Humanos , Hidrología , Ríos/química , Factores de Tiempo
9.
Glob Chang Biol ; 20(5): 1643-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24132912

RESUMEN

Carbon (C) sequestration in forest biomass and soils may help decrease regional C footprints and mitigate future climate change. The efficacy of these practices must be verified by monitoring and by approved calculation methods (i.e., models) to be credible in C markets. Two widely used soil organic matter models - CENTURY and RothC - were used to project changes in SOC pools after clear-cutting disturbance, as well as under a range of future climate and atmospheric carbon dioxide (CO(2) ) scenarios. Data from the temperate, predominantly deciduous Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, were used to parameterize and validate the models. Clear-cutting simulations demonstrated that both models can effectively simulate soil C dynamics in the northern hardwood forest when adequately parameterized. The minimum postharvest SOC predicted by RothC occurred in postharvest year 14 and was within 1.5% of the observed minimum, which occurred in year 8. CENTURY predicted the postharvest minimum SOC to occur in year 45, at a value 6.9% greater than the observed minimum; the slow response of both models to disturbance suggests that they may overestimate the time required to reach new steady-state conditions. Four climate change scenarios were used to simulate future changes in SOC pools. Climate-change simulations predicted increases in SOC by as much as 7% at the end of this century, partially offsetting future CO(2) emissions. This sequestration was the product of enhanced forest productivity, and associated litter input to the soil, due to increased temperature, precipitation and CO(2) . The simulations also suggested that considerable losses of SOC (8-30%) could occur if forest vegetation at HBEF does not respond to changes in climate and CO(2) levels. Therefore, the source/sink behavior of temperate forest soils likely depends on the degree to which forest growth is stimulated by new climate and CO(2) conditions.


Asunto(s)
Ciclo del Carbono , Carbono/metabolismo , Cambio Climático , Simulación por Computador , Bosques , Suelo/química , Monitoreo del Ambiente , Modelos Biológicos , New Hampshire
10.
J Appl Ecol ; 46(1): 154-163, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19536343

RESUMEN

Streams collect runoff, heat, and sediment from their watersheds, making them highly vulnerable to anthropogenic disturbances such as urbanization and climate change. Forecasting the effects of these disturbances using process-based models is critical to identifying the form and magnitude of likely impacts. Here, we integrate a new biotic model with four previously developed physical models (downscaled climate projections, stream hydrology, geomorphology, and water temperature) to predict how stream fish growth and reproduction will most probably respond to shifts in climate and urbanization over the next several decades.The biotic submodel couples dynamics in fish populations and habitat suitability to predict fish assemblage composition, based on readily available biotic information (preferences for habitat, temperature, and food, and characteristics of spawning) and day-to-day variability in stream conditions.WE ILLUSTRATE THE MODEL USING PIEDMONT HEADWATER STREAMS IN THE CHESAPEAKE BAY WATERSHED OF THE USA, PROJECTING TEN SCENARIOS: Baseline (low urbanization; no on-going construction; and present-day climate); one Urbanization scenario (higher impervious surface, lower forest cover, significant construction activity); four future climate change scenarios [Hadley CM3 and Parallel Climate Models under medium-high (A2) and medium-low (B2) emissions scenarios]; and the same four climate change scenarios plus Urbanization.Urbanization alone depressed growth or reproduction of 8 of 39 species, while climate change alone depressed 22 to 29 species. Almost every recreationally important species (i.e. trouts, basses, sunfishes) and six of the ten currently most common species were predicted to be significantly stressed. The combined effect of climate change and urbanization on adult growth was sometimes large compared to the effect of either stressor alone. Thus, the model predicts considerable change in fish assemblage composition, including loss of diversity.Synthesis and applications. The interaction of climate change and urban growth may entail significant reconfiguring of headwater streams, including a loss of ecosystem structure and services, which will be more costly than climate change alone. On local scales, stakeholders cannot control climate drivers but they can mitigate stream impacts via careful land use. Therefore, to conserve stream ecosystems, we recommend that proactive measures be taken to insure against species loss or severe population declines. Delays will inevitably exacerbate the impacts of both climate change and urbanization on headwater systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA