Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Open Forum Infect Dis ; 11(8): ofae414, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39113829

RESUMEN

Background: The independent effects of extranasal-only carriage, carriage at multiple bodily sites, or the bacterial load of colonizing Staphylococcus aureus (SA) on the risk of developing SA surgical site infections and postoperative bloodstream infections (SA SSI/BSIs) are unclear. We aimed to quantify these effects in this large prospective cohort study. Methods: Surgical patients aged 18 years or older were screened for SA carriage in the nose, throat, or perineum within 30 days before surgery. SA carriers and noncarriers were enrolled in a prospective cohort study in a 2:1 ratio. Weighted multivariable Cox proportional hazard models were used to assess the independent associations between different measures of SA carriage and occurrence of SA SSI/BSI within 90 days after surgery. Results: We enrolled 5004 patients in the study cohort; 3369 (67.3%) were SA carriers. 100 SA SSI/BSI events occurred during follow-up, and 86 (86%) of these events occurred in SA carriers. The number of colonized bodily sites (adjusted hazard ratio [aHR], 3.5-8.5) and an increasing SA bacterial load in the nose (aHR, 1.8-3.4) were associated with increased SA SSI/BSI risk. However, extranasal-only carriage was not independently associated with SA SSI/BSI (aHR, 1.5; 95% CI, 0.9-2.5). Conclusions: Nasal SA carriage was associated with an increased risk of SA SSI/BSI and accounted for the majority of SA infections. Higher bacterial load, as well as SA colonization at multiple bodily sites, further increased this risk.

2.
Front Med (Lausanne) ; 11: 1390549, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952863

RESUMEN

Objectives: Many studies have attempted to determine the disease severity and patterns of COVID-19. However, at the beginning of the pandemic, the complex patients' trajectories were only descriptively reported, and many analyses were worryingly prone to time-dependent-, selection-, and competing risk biases. Multi-state models avoid these biases by jointly analysing multiple clinical outcomes while taking into account their time dependency, including current cases, and modelling competing events. This paper uses a publicly available data set from the first wave in Israel as an example to demonstrate the benefits of analysing hospital data via multi-state methodology. Methods: We compared the outcome of the data analysis using multi-state models with the outcome obtained when various forms of bias are ignored. Furthermore, we used Cox regression to model the transitions among the states in a multi-state model. This allowed for the comparison of the covariates' influence on transition rates between the two states. Lastly, we calculated expected lengths of stay and state probabilities based on the multi-state model and visualised it using stacked probability plots. Results: Compared to standard methods, multi-state models avoid many biases in the analysis of real-time disease developments. The utility of multi-state models is further highlighted through the use of stacked probability plots, which visualise the results. In addition, by stratification of disease patterns by subgroups and visualisation of the distribution of possible outcomes, these models bring the data into an interpretable form. Conclusion: To accurately guide the provision of medical resources, this paper recommends the real-time collection of hospital data and its analysis using multi-state models, as this method eliminates many potential biases. By applying multi-state models to real-time data, the gained knowledge allows rapid detection of altered disease courses when new variants arise, which is essential when informing medical and political decision-makers as well as the general population.

3.
Front Med (Lausanne) ; 11: 1362192, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576716

RESUMEN

Introduction: This study aims to discuss and assess the impact of three prevalent methodological biases: competing risks, immortal-time bias, and confounding bias in real-world observational studies evaluating treatment effectiveness. We use a demonstrative observational data example of COVID-19 patients to assess the impact of these biases and propose potential solutions. Methods: We describe competing risks, immortal-time bias, and time-fixed confounding bias by evaluating treatment effectiveness in hospitalized patients with COVID-19. For our demonstrative analysis, we use observational data from the registry of patients with COVID-19 who were admitted to the Bellvitge University Hospital in Spain from March 2020 to February 2021 and met our predefined inclusion criteria. We compare estimates of a single-dose, time-dependent treatment with the standard of care. We analyze the treatment effectiveness using common statistical approaches, either by ignoring or only partially accounting for the methodological biases. To address these challenges, we emulate a target trial through the clone-censor-weight approach. Results: Overlooking competing risk bias and employing the naïve Kaplan-Meier estimator led to increased in-hospital death probabilities in patients with COVID-19. Specifically, in the treatment effectiveness analysis, the Kaplan-Meier estimator resulted in an in-hospital mortality of 45.6% for treated patients and 59.0% for untreated patients. In contrast, employing an emulated trial framework with the weighted Aalen-Johansen estimator, we observed that in-hospital death probabilities were reduced to 27.9% in the "X"-treated arm and 40.1% in the non-"X"-treated arm. Immortal-time bias led to an underestimated hazard ratio of treatment. Conclusion: Overlooking competing risks, immortal-time bias, and confounding bias leads to shifted estimates of treatment effects. Applying the naïve Kaplan-Meier method resulted in the most biased results and overestimated probabilities for the primary outcome in analyses of hospital data from COVID-19 patients. This overestimation could mislead clinical decision-making. Both immortal-time bias and confounding bias must be addressed in assessments of treatment effectiveness. The trial emulation framework offers a potential solution to address all three methodological biases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA