Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 18(1): 237-253, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36563689

RESUMEN

In the brain, the complement system plays a crucial role in the immune response and in synaptic elimination during normal development and disease. Here, we sought to identify pathways that modulate the production of complement component 4 (C4), recently associated with an increased risk of schizophrenia. To design a disease-relevant assay, we first developed a rapid and robust 3D protocol capable of producing large numbers of astrocytes from pluripotent cells. Transcriptional profiling of these astrocytes confirmed the homogeneity of this population of dorsal fetal-like astrocytes. Using a novel ELISA-based small-molecule screen, we identified epigenetic regulators, as well as inhibitors of intracellular signaling pathways, able to modulate C4 secretion from astrocytes. We then built a connectivity map to predict and validate additional key regulatory pathways, including one involving c-Jun-kinase. This work provides a foundation for developing therapies for CNS diseases involving the complement cascade.


Asunto(s)
Astrocitos , Células Madre Pluripotentes Inducidas , Astrocitos/metabolismo , Células Madre , Feto , Células Madre Pluripotentes Inducidas/metabolismo
2.
Cell Rep ; 40(10): 111312, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36070702

RESUMEN

Down syndrome (DS), driven by an extra copy of chromosome 21 (HSA21), and fragile X syndrome (FXS), driven by loss of the RNA-binding protein FMRP, are two common genetic causes of intellectual disability and autism. Based upon the number of DS-implicated transcripts bound by FMRP, we hypothesize that DS and FXS may share underlying mechanisms. Comparing DS and FXS human pluripotent stem cell (hPSC) and glutamatergic neuron models, we identify increased protein expression of select targets and overlapping transcriptional perturbations. Moreover, acute upregulation of endogenous FMRP in DS patient cells using CRISPRa is sufficient to significantly reduce expression levels of candidate proteins and reverse 40% of global transcriptional perturbations. These results pinpoint specific molecular perturbations shared between DS and FXS that can be leveraged as a strategy for target prioritization; they also provide evidence for the functional relevance of previous associations between FMRP targets and disease-implicated genes.


Asunto(s)
Síndrome de Down , Síndrome del Cromosoma X Frágil , Células Madre Pluripotentes , Síndrome de Down/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo
3.
Nat Commun ; 13(1): 3690, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760976

RESUMEN

It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.


Asunto(s)
Síndrome de DiGeorge , Células Madre Pluripotentes Inducidas , Esquizofrenia , Línea Celular , Síndrome de DiGeorge/genética , Humanos , Neuronas , ARN , Esquizofrenia/genética
4.
Stem Cell Reports ; 16(9): 2138-2148, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34416176

RESUMEN

Human pluripotent stem cells (hPSCs) have proven to be valuable tools for both drug discovery and the development of cell-based therapies. However, the long non-coding RNA XIST, which is essential for the establishment and maintenance of X chromosome inactivation, is repressed during culture, thereby causing erosion of dosage compensation in female hPSCs. Here, we report that the de novo DNA methyltransferases DNMT3A/3B are necessary for XIST repression in female hPSCs. We found that the deletion of both genes, but not the individual genes, inhibited XIST silencing, maintained the heterochromatin mark of H3K27me3, and did not cause global overdosage in X-linked genes. Meanwhile, DNMT3A/3B deletion after XIST repression failed to restore X chromosome inactivation. Our findings revealed that de novo DNA methyltransferases are primary factors responsible for initiating erosion of dosage compensation in female hPSCs, and XIST silencing is stably maintained in a de novo DNA-methylation-independent manner.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A/genética , Regulación de la Expresión Génica , Silenciador del Gen , Células Madre Pluripotentes/metabolismo , ARN Largo no Codificante/genética , Ensamble y Desensamble de Cromatina , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A/metabolismo , Compensación de Dosificación (Genética) , Epigénesis Genética , Perfilación de la Expresión Génica , Genes Ligados a X , Antecedentes Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Modelos Biológicos , Células Madre Pluripotentes/citología , ADN Metiltransferasa 3B
5.
Sci Rep ; 10(1): 635, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959800

RESUMEN

CRISPR-Cas9-mediated gene interference (CRISPRi) and activation (CRISPRa) approaches hold promise for functional gene studies and genome-wide screens in human pluripotent stem cells (hPSCs). However, in contrast to CRISPR-Cas9 nuclease approaches, the efficiency of CRISPRi/a depends on continued expression of the dead Cas9 (dCas9) effector and guide RNA (gRNA), which can vary substantially depending on transgene design and delivery. Here, we design and generate new fluorescently labeled piggyBac (PB) vectors to deliver uniform and sustained expression of multiplexed gRNAs. In addition, we generate hPSC lines harboring AAVS1-integrated, inducible and fluorescent dCas9-KRAB and dCas9-VPR transgenes to allow for accurate quantification and tracking of cells that express both the dCas9 effectors and gRNAs. We then employ these systems to target the TCF4 gene in hPSCs and assess expression levels of the dCas9 effectors, individual gRNAs and targeted gene. We also assess the performance of our PB system for single gRNA delivery, confirming its utility for library format applications. Collectively, our results provide proof-of-principle application of a stable, multiplexed PB gRNA delivery system that can be widely exploited to further enable genome engineering studies in hPSCs. Paired with diverse CRISPR tools including our dual fluorescence CRISPRi/a cell lines, this system can facilitate functional dissection of individual genes and pathways as well as larger-scale screens for studies of development and disease.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Vectores Genéticos , Células Madre Pluripotentes , ARN Guía de Kinetoplastida , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Línea Celular , Proteínas de Drosophila , Humanos , Transgenes
6.
Proteomics ; 18(23): e1800208, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30285306

RESUMEN

The eukaryotic ribosomal protein RACK1/Asc1p is localized to the mRNA exit channel of the 40S subunit but lacks a defined role in mRNA translation. Saccharomyces cerevisiae deficient in ASC1 exhibit temperature-sensitive growth. Using this null mutant, potential roles for Asc1p in translation and ribosome biogenesis are evaluated. At the restrictive temperature the asc1Δ null mutant has reduced polyribosomes. To test the role of Asc1p in ribosome stability, cryo-EM is used to examine the structure of 80S ribosomes in an asc1Δ yeast deletion mutant at both the permissive and nonpermissive temperatures. CryoEM indicates that loss of Asc1p does not severely disrupt formation of this complex structure. No defect is found in rRNA processing in the asc1Δ null mutant. A proteomic approach is applied to survey the effect of Asc1p loss on the global translation of yeast proteins. At the nonpermissive temperature, the asc1Δ mutant has reduced levels of ribosomal proteins and other factors critical for translation. Collectively, these results are consistent with recent observations suggesting that Asc1p is important for ribosome occupancy of short mRNAs. The results show the Asc1 ribosomal protein is critical in translation during heat stress.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Unión Proteica , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Temperatura
7.
Stem Cell Reports ; 9(4): 1315-1327, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29020615

RESUMEN

Scaling of CRISPR-Cas9 technology in human pluripotent stem cells (hPSCs) represents an important step for modeling complex disease and developing drug screens in human cells. However, variables affecting the scaling efficiency of gene editing in hPSCs remain poorly understood. Here, we report a standardized CRISPR-Cas9 approach, with robust benchmarking at each step, to successfully target and genotype a set of psychiatric disease-implicated genes in hPSCs and provide a resource of edited hPSC lines for six of these genes. We found that transcriptional state and nucleosome positioning around targeted loci was not correlated with editing efficiency. However, editing frequencies varied between different hPSC lines and correlated with genomic stability, underscoring the need for careful cell line selection and unbiased assessments of genomic integrity. Together, our step-by-step quantification and in-depth analyses provide an experimental roadmap for scaling Cas9-mediated editing in hPSCs to study psychiatric disease, with broader applicability for other polygenic diseases.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Biomarcadores , Diferenciación Celular/genética , Línea Celular , Expresión Génica , Marcación de Gen , Genes Reporteros , Inestabilidad Genómica , Humanos , Mutación INDEL , Trastornos Mentales/etiología , Trastornos Mentales/metabolismo , Trastornos Mentales/psicología , Neuronas/citología , Neuronas/metabolismo , Flujo de Trabajo
8.
Stem Cell Res ; 17(2): 430-432, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27879218

RESUMEN

Here, we generated a biallelic mutation in the TLE1 (Transducin Like Enhancer of Split 1) gene using CRISPR-Cas9 editing in the human embryonic stem cell (hESC) line WA01. The homozygous knockout cell line, TLE1-464-G04, displays loss of TLE1 protein expression while maintaining pluripotency, differentiation potential and genomic integrity.


Asunto(s)
Sistemas CRISPR-Cas/genética , Células Madre Embrionarias Humanas/metabolismo , Proteínas Represoras/genética , Secuencia de Bases , Western Blotting , Diferenciación Celular , Línea Celular , Proteínas Co-Represoras , Cuerpos Embrioides/metabolismo , Cuerpos Embrioides/patología , Células Madre Embrionarias Humanas/citología , Humanos , Cariotipo , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Stem Cell Res ; 17(2): 441-443, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27879221

RESUMEN

Here, we generated a monoallelic mutation in the TLE3 (Transducin Like Enhancer of Split 3) gene using CRISPR-Cas9 editing in the human embryonic stem cell (hESC) line WA01. The heterozygous knockout cell line, TLE3-447-D08-A01, displays partial loss of TLE3 protein expression while maintaining pluripotency, differentiation potential and genomic integrity.


Asunto(s)
Sistemas CRISPR-Cas/genética , Proteínas Co-Represoras/genética , Secuencia de Bases , Western Blotting , Línea Celular , Proteínas Co-Represoras/química , Proteínas Co-Represoras/metabolismo , Cuerpos Embrioides/metabolismo , Cuerpos Embrioides/patología , Heterocigoto , Células Madre Embrionarias Humanas , Humanos , Cariotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Mol Cell ; 51(6): 850-8, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24035501

RESUMEN

The C-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (RNApII), coordinates recruitment of RNA- and chromatin-modifying factors to transcription complexes. It is unclear whether the CTD communicates with the catalytic core region of Rpb1 and thus must be physically connected, or instead can function as an independent domain. To address this question, CTD was transferred to other RNApII subunits. Fusions to Rpb4 or Rpb6, two RNApII subunits located near the original position of CTD, support viability in a strain carrying a truncated Rpb1. In contrast, CTD fusion to Rpb9 on the other side of RNApII does not. Rpb4-CTD and Rpb6-CTD proteins are functional for phosphorylation and recruitment of various factors, albeit with some restrictions and minor defects. Normal CTD functions are not transferred to RNApI or RNApIII by Rbp6-CTD. These results show that, with some spatial constraints, CTD can function even when disconnected from Rpb1.


Asunto(s)
Cromatina/genética , Estructura Terciaria de Proteína/genética , ARN Polimerasa II/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ARN Polimerasas Dirigidas por ADN/biosíntesis , ARN Polimerasas Dirigidas por ADN/genética , Fosforilación , ARN , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , Serina/metabolismo
11.
Mol Cell ; 49(1): 55-66, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23177741

RESUMEN

The essential helicase-like protein Sen1 mediates termination of RNA Polymerase II (Pol II) transcription at snoRNAs and other noncoding RNAs in yeast. A mutation in the Pol II subunit Rpb1 that increases the elongation rate increases read-through transcription at Sen1-mediated terminators. Termination and growth defects in sen1 mutant cells are partially suppressed by a slowly transcribing Pol II mutant and are exacerbated by a faster-transcribing Pol II mutant. Deletion of the nuclear exosome subunit Rrp6 allows visualization of noncoding RNA intermediates that are terminated but not yet processed. Sen1 mutants or faster-transcribing Pol II increase the average lengths of preprocessed snoRNA, CUT, and SUT transcripts, while slowed Pol II transcription produces shorter transcripts. These connections between transcription rate and Sen1 activity support a model whereby kinetic competition between elongating Pol II and Sen1 helicase establishes the temporal and spatial window for early Pol II termination.


Asunto(s)
ADN Helicasas/metabolismo , ARN Helicasas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Terminación de la Transcripción Genética , Alelos , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Mapeo Cromosómico , ADN Helicasas/genética , Cinética , ARN Helicasas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/fisiología , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
12.
Curr Biol ; 22(22): R960-2, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23174300

RESUMEN

How do cells stop transcribing RNA Polymerase II to promote proper gene expression and prevent transcriptional havoc in the genome? In the case of Leishmania, a uniquely modified DNA base blocks RNA Polymerase II and suggests an interesting new model for transcription termination.


Asunto(s)
Glucósidos/química , ARN Polimerasa II/metabolismo , Transcripción Genética/fisiología , Uracilo/análogos & derivados , Animales , Genoma de Protozoos , Glucósidos/genética , Glucósidos/metabolismo , Leishmania/metabolismo , Estructura Molecular , ARN Polimerasa II/genética , Uracilo/química , Uracilo/metabolismo
13.
Transcription ; 2(3): 145-154, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21826286

RESUMEN

Non-coding transcripts originating from bidirectional promoters have been reported in a wide range of organisms. In yeast, these divergent transcripts can be subdivided into two classes. Some are designated Cryptic Unstable Transcripts (CUTs) because they are terminated by the Nrd1-Nab3-Sen1 pathway and then rapidly degraded by the nuclear exosome. This is the same processing pathway used by yeast snoRNAs. Whereas CUTs are only easily observed in cells lacking the Rrp6 or Rrp47 subunits of the nuclear exosome, Stable Uncharacterized Transcripts (SUTs) are present even in wild-type cells. Here we show that SUTs are partially susceptible to the nuclear exosome, but are primarily degraded by cytoplasmic 5' to 3' degradation and nonsense-mediated decay (NMD). Therefore, SUTs may be processed similarly to mRNAs. Surprisingly, both CUTs and SUTs were found to produce 3' extended species that were also subject to cytoplasmic degradation. The functions, if any, of these extended CUTs and SUTs are unknown, but their discovery suggests that yeasts generate transcripts reminiscent of long non-coding RNAs found in higher eukaryotes.

14.
J Biol Chem ; 283(18): 12402-14, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18319248

RESUMEN

The site-specific recombinase integrase encoded by bacteriophage lambda promotes integration and excision of the viral chromosome into and out of its Escherichia coli host chromosome through a Holliday junction recombination intermediate. This intermediate contains an integrase tetramer bound via its catalytic carboxyl-terminal domains to the four "core-type" sites of the Holliday junction DNA and via its amino-terminal domains to distal "arm-type" sites. The two classes of integrase binding sites are brought into close proximity by an ensemble of accessory proteins that bind and bend the intervening DNA. We have used a biotin interference assay that probes the requirement for major groove protein binding at specified DNA loci in conjunction with DNA protection, gel mobility shift, and genetic experiments to test several predictions of the models derived from the x-ray crystal structures of minimized and symmetrized surrogates of recombination intermediates lacking the accessory proteins and their cognate DNA targets. Our data do not support the predictions of "non-canonical" DNA targets for the N-domain of integrase, and they indicate that the complexes used for x-ray crystallography are more appropriate for modeling excisive rather than integrative recombination intermediates. We suggest that the difference in the asymmetric interaction profiles of the N-domains and arm-type sites in integrative versus excisive recombinogenic complexes reflects the regulation of recombination, whereas the asymmetry of these patterns within each reaction contributes to directionality.


Asunto(s)
Sitios de Ligazón Microbiológica , Bacteriófago lambda/enzimología , Bioensayo/métodos , Biotina/metabolismo , Integrasas/metabolismo , Recombinación Genética/genética , Sitios de Unión , ADN Nucleotidiltransferasas/metabolismo , ADN Cruciforme/química , Modelos Biológicos , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Eliminación de Secuencia
15.
J Mol Biol ; 351(5): 948-55, 2005 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-16054645

RESUMEN

Bacteriophage lambda integrase (Int) catalyzes the integration and excision of the phage lambda chromosome into and out of the Esherichia coli host chromosome. The seven carboxy-terminal residues (C-terminal tail) of Int comprise a context-sensitive regulatory element that links catalytic function with protein multimerization and also coordinates Int functions within the multimeric recombinogenic complex. The experiments reported here show that the beta5-strand of Int is not simply a placeholder for the C-terminal tail but rather exerts its own allosteric effects on Int function in response to the incoming tail. Using a mutant integrase in which the C-terminal tail has been deleted (W350ter), we demonstrate that the C-terminal tail is required for efficient and accurate resolution of Holliday junctions by tetrameric Int. Addition of a free heptameric peptide of the same sequence as the C-terminal tail partially reverses the W350ter defects by stimulating Holliday junction resolution. The peptide also stimulates the topoisomerase function of monomeric W350ter. Single residue alterations in the peptide sequence and a mutant of the beta5 strand indicate that the observed stimulation arises from specific contacts with the beta5 strand (residues 239-243). The peptide does not stimulate binding of W350ter to its cognate DNA sites and therefore appears to recapitulate the effects of the normal C-terminal tail intermolecular contacts in wild-type Int. Models for the allosteric stimulation of Int activity by beta5 strand contacts are discussed.


Asunto(s)
Bacteriófago lambda/enzimología , Integrasas/química , Integrasas/genética , Recombinación Genética , Sitio Alostérico , Bacteriófago lambda/genética , Cromosomas Bacterianos/metabolismo , Cristalografía por Rayos X , ADN/química , ADN Cruciforme , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformación Molecular , Conformación de Ácido Nucleico , Péptidos/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...