Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
Diabetes ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701355

RESUMEN

Bile acids (BAs) are cholesterol-derived compounds that regulate glucose, lipid, and energy metabolism. Despite their significance in glucose homeostasis, the association between specific BA molecular species and their synthetic pathways with diabetes mellitus (DM) is unclear. Here, we used a recently validated stable-isotope dilution highperformance liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to quantify a panel of BAs in fasting plasma from subjects (n=2,145) and explored structural and genetic determinants of BAs linked to DM, insulin resistance and obesity. Multiple 12α-hydroxylated BAs were associated with DM [adjusted odds ratios (aORs):1.3-1.9 (all P<0.05)] and insulin resistance [aORs:1.3-2.2 (all P<0.05)]. Conversely, multiple 6a-hydroxylated BAs and isolithocholic acid (Iso-LCA) were inversely associated with DM and obesity [aORs:0.3-0.9 (all P<0.05)]. Genome-wide association studies (GWAS) revealed multiple genome-wide significant loci linked with nine of the 14 DM-associated BAs, including a locus for Iso-LCA (rs11866815). Mendelian randomization analyses showed genetically elevated DCA levels were causally associated with higher BMI, and Iso-LCA levels were causally associated with reduced BMI and DM risk. In conclusion, comprehensive large-scale quantitative mass spectrometry and genetics analyses show circulating levels of multiple structurally specific BAs, especially DCA and Iso-LCA, are clinically associated with and genetically linked to obesity and DM.

3.
Mayo Clin Proc ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38678458

RESUMEN

OBJECTIVE: To evaluate the association between trimethylamine N-oxide (TMAO) and related metabolites with adverse cardiovascular events in a multiethnic urban primary prevention population. METHODS: We performed a case-control study of 361 participants of the Dallas Heart Study, including 88 participants with an incident atherosclerotic cardiovascular disease (ASCVD) event and 273 controls matched for age, sex, and body mass index without an ASCVD event during 12 years of follow-up (January 1, 2000, through December 31, 2015). Plasma levels of TMAO, choline, carnitine, betaine, and butyrobetaine were measured by mass spectrometry. The differential odds for incident ASCVD by metabolite levels between cases and controls were compared by a conditional logistic regression model adjusted for cardiovascular risk factors. RESULTS: Participants with incident ASCVD had higher levels of TMAO and related metabolites compared with those without ASCVD (P<.05 for all). Those with plasma TMAO concentrations in quartile 4 had a more than 2-fold higher odds of ASCVD compared with those in quartile 1 (odds ratio, 2.77 [95% CI, 1.05 to 7.7; P=.04] for hard ASCVD and 2.41 [95% CI, 1.049 to 5.709; P=.04]). Similar trends were seen with the related metabolites choline, betaine, carnitine, and butyrobetaine. CONCLUSION: Our results suggest that TMAO and related metabolites are independently associated with ASCVD events. Although further studies are needed, measurement of TMAO and related metabolites may have a role in ASCVD risk stratification for primary prevention.

6.
Nat Med ; 30(2): 424-434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374343

RESUMEN

Despite intensive preventive cardiovascular disease (CVD) efforts, substantial residual CVD risk remains even for individuals receiving all guideline-recommended interventions. Niacin is an essential micronutrient fortified in food staples, but its role in CVD is not well understood. In this study, untargeted metabolomics analysis of fasting plasma from stable cardiac patients in a prospective discovery cohort (n = 1,162 total, n = 422 females) suggested that niacin metabolism was associated with incident major adverse cardiovascular events (MACE). Serum levels of the terminal metabolites of excess niacin, N1-methyl-2-pyridone-5-carboxamide (2PY) and N1-methyl-4-pyridone-3-carboxamide (4PY), were associated with increased 3-year MACE risk in two validation cohorts (US n = 2,331 total, n = 774 females; European n = 832 total, n = 249 females) (adjusted hazard ratio (HR) (95% confidence interval) for 2PY: 1.64 (1.10-2.42) and 2.02 (1.29-3.18), respectively; for 4PY: 1.89 (1.26-2.84) and 1.99 (1.26-3.14), respectively). Phenome-wide association analysis of the genetic variant rs10496731, which was significantly associated with both 2PY and 4PY levels, revealed an association of this variant with levels of soluble vascular adhesion molecule 1 (sVCAM-1). Further meta-analysis confirmed association of rs10496731 with sVCAM-1 (n = 106,000 total, n = 53,075 females, P = 3.6 × 10-18). Moreover, sVCAM-1 levels were significantly correlated with both 2PY and 4PY in a validation cohort (n = 974 total, n = 333 females) (2PY: rho = 0.13, P = 7.7 × 10-5; 4PY: rho = 0.18, P = 1.1 × 10-8). Lastly, treatment with physiological levels of 4PY, but not its structural isomer 2PY, induced expression of VCAM-1 and leukocyte adherence to vascular endothelium in mice. Collectively, these results indicate that the terminal breakdown products of excess niacin, 2PY and 4PY, are both associated with residual CVD risk. They also suggest an inflammation-dependent mechanism underlying the clinical association between 4PY and MACE.


Asunto(s)
Enfermedades Cardiovasculares , Niacina , Femenino , Humanos , Ratones , Animales , Modelos de Riesgos Proporcionales , Inflamación
7.
Circ Res ; 134(4): 371-389, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38264909

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS: Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS: The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS: Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Propionatos , Sirtuina 3 , Humanos , Ratones , Animales , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico/fisiología , NAD , Sirtuina 3/genética , Indoles/farmacología , Niacinamida
8.
Cancer ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285606

RESUMEN

BACKGROUND: Dietary intake influences gut microbiome composition, which in turn may be associated with colorectal cancer (CRC). Associations of the gut microbiome with colorectal carcinogenesis may be mediated through bacterially regulated, metabolically active metabolites, including trimethylamine N-oxide (TMAO) and its precursors, choline, L-carnitine, and betaine. METHODS: Prospective associations of circulating TMAO and its precursors with CRC risk were investigated. TMAO, choline, betaine, and L-carnitine were measured in baseline serum samples from 761 incident CRC cases and 1:1 individually matched controls in the prospective Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort using targeted fully quantitative liquid chromatography tandem mass spectrometry panels. Prospective associations of the metabolites with CRC risk, using multivariable conditional logistic regression, were measured. Associations of a priori-selected dietary exposures with the four metabolites were also investigated. RESULTS: TMAO and its precursors were not associated with CRC risk overall, but TMAO and choline were positively associated with higher risk for distal CRC (continuous ORQ90 vs. Q10  [95% CI] = 1.90 [CI, 1.24-2.92; p = .003] and 1.26 [1.17-1.36; p < .0001], respectively). Conversely, choline was inversely associated with rectal cancer (ORQ90 vs. Q10 [95% CI] = 0.77 [0.76-0.79; p < .001]). Red meat, which was previously associated with CRC risk in the Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort , was positively associated with TMAO (Spearman rho = 0.10; p = .0003). CONCLUSIONS: Serum TMAO and choline may be associated with higher risk of distal CRC, and red meat may be positively associated with serum TMAO. These findings provide insight into a potential microbially mediated mechanism underlying CRC etiology.

9.
Eur J Heart Fail ; 26(2): 233-241, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38124458

RESUMEN

AIM: Phenylacetylglutamine (PAGln) is a phenylalanine-derived metabolite produced by gut microbiota with mechanistic links to heart failure (HF)-relevant phenotypes. We sought to investigate the prognostic value of PAGln in patients with stable HF. METHODS AND RESULTS: Fasting plasma PAGln levels were measured by stable-isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) in patients with stable HF from two large cohorts. All-cause mortality was assessed at 5-year follow-up in the Cleveland cohort, and HF, hospitalization, or mortality were assessed at 3-year follow-up in the Berlin cohort. Within the Cleveland cohort, median PAGln levels were 4.2 (interquartile range [IQR] 2.4-6.9) µM. Highest quartile of PAGln was associated with 3.09-fold increased mortality risk compared to lowest quartile. Following adjustments for traditional risk factors, as well as race, estimated glomerular filtration rate, amino-terminal pro-B-type natriuretic peptide, high-sensitivity C-reactive protein, left ventricular ejection fraction, ischaemic aetiology, and HF drug treatment, elevated PAGln levels remained predictive of 5-year mortality in quartile comparisons (adjusted hazard ratio [HR] [95% confidence interval, CI] for Q4 vs Q1: 1.64 [1.07-2.53]). In the Berlin cohort, a similar distribution of PAGln levels was observed (median 3.2 [IQR 2.0-4.8] µM), and PAGln levels were associated with a 1.92-fold increase in 3-year HF hospitalization or all-cause mortality risk (adjusted HR [95% CI] for Q4 vs Q1: 1.92 [1.02-3.61]). Prognostic value of PAGln appears to be independent of trimethylamine N-oxide levels. CONCLUSION: High levels of PAGln are associated with adverse outcomes independent of traditional cardiac risk factors and cardio-renal risk markers.


Asunto(s)
Microbioma Gastrointestinal , Glutamina/análogos & derivados , Insuficiencia Cardíaca , Humanos , Pronóstico , Biomarcadores , Volumen Sistólico , Cromatografía Liquida , Función Ventricular Izquierda , Espectrometría de Masas en Tándem
10.
JAMA Netw Open ; 6(12): e2347296, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085542

RESUMEN

Importance: Preclinical studies suggest a potential role for aspirin in slowing abdominal aortic aneurysm (AAA) progression and preventing rupture. Evidence on the clinical benefit of aspirin in AAA from human studies is lacking. Objective: To investigate the association of aspirin use with aneurysm progression and long-term clinical outcomes in patients with AAA. Design, Setting, and Participants: This was a retrospective, single-center cohort study. Adult patients with at least 2 available vascular ultrasounds at the Cleveland Clinic were included, and patients with history of aneurysm repair, dissection, or rupture were excluded. All patients were followed up for 10 years. Data were analyzed from May 2022 to July 2023. Main Outcomes and Measures: Clinical outcomes were time-to-first occurrence of all-cause mortality, major bleeding, or composite of dissection, rupture, and repair. Multivariable-adjusted Cox proportional-hazard regression was used to estimate hazard ratios (HR) for all-cause mortality, and subhazard ratios competing-risk regression using Fine and Gray proportional subhazards regression was used for major bleeding and composite outcome. Aneurysm progression was assessed by comparing the mean annualized change of aneurysm diameter using multivariable-adjusted linear regression and comparing the odds of having rapid progression (annual diameter change >0.5 cm per year) using logistic regression. Results: A total of 3435 patients (mean [SD] age 73.7 [9.0] years; 2672 male patients [77.5%]; 120 Asian, Hispanic, American Indian, or Pacific Islander patients [3.4%]; 255 Black patients [7.4%]; 3060 White patients [89.0%]; and median [IQR] follow-up, 4.9 [2.5-7.5] years) were included in the final analyses, of which 2150 (63%) were verified to be taking aspirin by prescription. Patients taking aspirin had a slower mean (SD) annualized change in aneurysm diameter (2.8 [3.0] vs 3.8 [4.2] mm per year; P = .001) and lower odds of having rapid aneurysm progression compared with patients not taking aspirin (adjusted odds ratio, 0.64; 95% CI, 0.49-0.89; P = .002). Aspirin use was not associated with risk of all-cause mortality (adjusted HR [aHR], 0.92; 95% CI, 0.79-1.07; P = .32), nor was aspirin use associated with major bleeding (aHR, 0.88; 95% CI, 0.76-1.03; P = .12), or composite outcome (aHR, 1.16; 95% CI, 0.93-1.45; P = .09) at 10 years. Conclusions: In this retrospective study of a clinical cohort of 3435 patients with objectively measured changes in aortic aneurysm growth, aspirin use was significantly associated with slower progression of AAA with a favorable safety profile.


Asunto(s)
Aneurisma de la Aorta Abdominal , Procedimientos Endovasculares , Adulto , Humanos , Masculino , Anciano , Estudios Retrospectivos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Estudios de Cohortes , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aspirina/uso terapéutico , Hemorragia/etiología
12.
mBio ; : e0133123, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37947418

RESUMEN

p-Cresol sulfate (pCS) and indoxyl sulfate (IS), gut microbiome-derived metabolites, are traditionally associated with cardiovascular disease (CVD) risks in the setting of impaired kidney function. While pharmacologic provision of pCS or IS can promote pro-thrombotic phenotypes, neither the microbial enzymes involved nor direct gut microbial production have been linked to CVD. Untargeted metabolomics was performed on a discovery cohort (n = 1,149) with relatively preserved kidney function, followed by stable isotope-dilution mass spectrometry quantification of pCS and IS in an independent validation cohort (n = 3,954). Genetic engineering of human commensals to produce p-cresol and indole gain-of-function and loss-of-function mutants, followed by colonization of germ-free mice, and studies on host thrombosis were performed. Systemic pCS and IS levels were independently associated with all-cause mortality. Both in vitro and within colonized germ-free mice p-cresol productions were recapitulated by collaboration of two organisms: a Bacteroides strain that converts tyrosine to 4-hydroxyphenylacetate, and a Clostridium strain that decarboxylates 4-hydroxyphenylacetate to p-cresol. We then engineered a single organism, Bacteroides thetaiotaomicron, to produce p-cresol, indole, or both metabolites. Colonizing germ-free mice with engineered strains, we show the gut microbial genes for p-cresol (hpdBCA) and indole (tryptophanase) are sufficient to confer a pro-thrombotic phenotype in vivo. Moreover, human fecal metagenomics analyses show that abundances of hpdBCA and tryptophanase are associated with CVD. These studies show that pCS and IS, two abundant microbiome-derived metabolites, play a broader potential role in CVD than was previously known. They also suggest that therapeutic targeting of gut microbial p-cresol- and indole-producing pathways represent rational targets for CVD.IMPORTANCEAlterations in gut microbial composition and function have been linked to numerous diseases. Identifying microbial pathways responsible for producing molecules that adversely impact the host is an important first step in the development of therapeutic interventions. Here, we first use large-scale clinical observations to link blood levels of defined microbial products to cardiovascular disease risks. Notably, the previously identified uremic toxins p-cresol sulfate and indoxyl sulfate were shown to predict 5-year mortality risks. After identifying the microbes and microbial enzymes involved in the generation of these uremic toxins, we used bioengineering technologies coupled with colonization of germ-free mice to show that the gut microbial genes that generate p-cresol and indole are sufficient to confer p-cresol sulfate and indoxyl sulfate formation, and a pro-thrombotic phenotype in vivo. The findings and tools developed serve as a critical step in both the study and targeting of these gut microbial pathways in vivo.

14.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014234

RESUMEN

The glioblastoma microenvironment is enriched in immunosuppressive factors that potently interfere with the function of cytotoxic T lymphocytes. Cancer cells can directly impact the immune system, but the mechanisms driving these interactions are not completely clear. Here we demonstrate that the polyamine metabolite spermidine is elevated in the glioblastoma tumor microenvironment. Exogenous administration of spermidine drives tumor aggressiveness in an immune-dependent manner in pre-clinical mouse models via reduction of CD8+ T cell frequency and phenotype. Knockdown of ornithine decarboxylase, the rate-limiting enzyme in spermidine synthesis, did not impact cancer cell growth in vitro but did result in extended survival. Furthermore, glioblastoma patients with a more favorable outcome had a significant reduction in spermidine compared to patients with a poor prognosis. Our results demonstrate that spermidine functions as a cancer cell-derived metabolite that drives tumor progression by reducing CD8+T cell number and function.

15.
Atherosclerosis ; 387: 117344, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37945449

RESUMEN

BACKGROUND AND AIMS: Cardiovascular disease (CVD) remains the largest cause of death globally due to various risk factors. One novel potential contributor to CVD might be the metabolism of the essential amino acid tryptophan (Trp), which through many pathways can produce immunomodulatory metabolites such as kynurenine, indole-3-propionate and serotonin. We aim to identify the metabolites with the strongest association with cardiovascular disease, utilizing a substantial and diverse cohort of individuals. In our pursuit of this aim, our primary focus is to validate and reinforce the findings from previous cross-sectional studies. METHODS: We used the community-based EPIC-Norfolk cohort (46.3 % men, age 59.8 ± 9.0) with a median follow-up of 22.1 (17.6-23.3) years to study associations between the relative levels of Trp metabolites measured with untargeted metabolomics and incident development of CVD. Serum from n = 11,972 apparently healthy subjects was analysed, of which 6982 individuals had developed CVD at the end of follow-up. Cox proportional hazard models were used to study associations, adjusted for sex, age, conventional cardiovascular risk factors and CRP. All metabolites were Ln-normalised prior to analysis. RESULTS: Higher levels of Trp were inversely associated with mortality (HR 0.73; CI 0.64-0.83) and fatal CVD (HR 0.76; CI 0.59-0.99). Higher levels of kynurenine (HR 1.33; CI 1.19-1.49) and the [Kynurenine]/[Tryptophan]-ratio (HR 1.24; CI 1.14-1.35) were associated with a higher incident development of CVD. Serotonin was not associated with overall CVD, but we did find associations for myocardial infarction and stroke. Adjustment for CRP did not yield any discernible differences in effect size. CONCLUSIONS: Tryptophan levels were inversely correlated with CVD, while several of its major metabolites (especially kynurenine and serotonin) were positively correlated. These findings indicate that mechanistic studies are required to understand the role of Trp metabolism in CVD with the goal to identify new therapeutic targets.


Asunto(s)
Enfermedades Cardiovasculares , Masculino , Humanos , Adolescente , Adulto Joven , Adulto , Femenino , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Triptófano/metabolismo , Estudios Prospectivos , Quinurenina , Serotonina , Factores de Riesgo
16.
Hepatol Commun ; 7(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820283

RESUMEN

BACKGROUND: Chronic alcohol consumption impairs gut barrier function and perturbs the gut microbiome. Although shifts in bacterial communities in patients with alcohol-associated liver disease (ALD) have been characterized, less is known about the interactions between host metabolism and circulating microbe-derived metabolites during the progression of ALD. METHODS: A large panel of gut microbiome-derived metabolites of aromatic amino acids was quantified by stable isotope dilution liquid chromatography with online tandem mass spectrometry in plasma from healthy controls (n = 29), heavy drinkers (n = 10), patients with moderate (n = 16) or severe alcohol-associated hepatitis (n = 40), and alcohol-associated cirrhosis (n = 10). RESULTS: The tryptophan metabolites, serotonin and indole-3-propionic acid, and tyrosine metabolites, p-cresol sulfate, and p-cresol glucuronide, were decreased in patients with ALD. Patients with severe alcohol-associated hepatitis and alcohol-associated cirrhosis had the largest decrease in concentrations of tryptophan and tyrosine-derived metabolites compared to healthy control. Western blot analysis and interrogation of bulk RNA sequencing data from patients with various liver pathologies revealed perturbations in hepatic expression of phase II metabolism enzymes involved in sulfonation and glucuronidation in patients with severe forms of ALD. CONCLUSIONS: We identified several metabolites decreased in ALD and disruptions of hepatic phase II metabolism. These results indicate that patients with more advanced stages of ALD, including severe alcohol-associated hepatitis and alcohol-associated cirrhosis, had complex perturbations in metabolite concentrations that likely reflect both changes in the composition of the gut microbiome community and the ability of the host to enzymatically modify the gut-derived metabolites.


Asunto(s)
Aminoácidos Aromáticos , Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Hígado , Humanos , Aminoácidos Aromáticos/metabolismo , Hepatitis/metabolismo , Hepatitis/fisiopatología , Cirrosis Hepática Alcohólica/metabolismo , Cirrosis Hepática Alcohólica/fisiopatología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/fisiopatología , Triptófano/metabolismo , Tirosina , Microbioma Gastrointestinal/fisiología , Hepatitis Alcohólica/metabolismo , Hepatitis Alcohólica/fisiopatología , Hígado/metabolismo , Hígado/fisiopatología
17.
mBio ; 14(5): e0093723, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37737636

RESUMEN

IMPORTANCE: The key atherosclerotic TMAO originates from the initial gut microbial conversion of L-carnitine and other dietary compounds into TMA. Developing therapeutic strategies to block gut microbial TMA production needs a detailed understanding of the different production mechanisms and their relative contributions. Recently, we identified a two-step anaerobic pathway for TMA production from L-carnitine through initial conversion by some microbes into the intermediate γBB which is then metabolized by other microbes into TMA. Investigational studies of this pathway, however, are limited by the lack of single microbes harboring the whole pathway. Here, we engineered E. fergusonii strain to harbor the whole two-step pathway and optimized the expression through cloning a specific chaperone from the original host. Inoculating germ-free mice with this recombinant E. fergusonii is enough to raise serum TMAO to pathophysiological levels upon L-carnitine feeding. This engineered microbe will facilitate future studies investigating the contribution of this pathway to cardiovascular disease.


Asunto(s)
Carnitina , Metilaminas , Ratones , Animales , Anaerobiosis , Modelos Animales de Enfermedad , Carnitina/metabolismo , Metilaminas/metabolismo , Redes y Vías Metabólicas/genética , Colina/metabolismo
18.
Diabetes Res Clin Pract ; 205: 110923, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774978

RESUMEN

AIMS: Cardiovascular risk assessment beyond traditional risk factors in subjects with prediabetes is not well-established. Here, we evaluated the utility of N-terminal pro-B-type natriuretic peptide (NT-proBNP) in predicting incident adverse cardiovascular outcomes in prediabetic subjects. METHODS: NT-proBNP was analyzed in 3,235 stable subjects with prediabetes undergoing cardiovascular risk evaluation and followed for both 3-year major adverse cardiac events (MACE; death, myocardial infarction, stroke), and 5-year all-cause mortality. RESULTS: Using Cox proportional hazard models, we found that plasma NT-proBNP was associated with incident (3-year) MACE risk (Q4 vs Q1, HR 6.04 [95%CI 4.17-8.76], P < 0.001) and 5-year mortality risk (HR 8.64 [95%CI 5.78-12.9], P < 0.001). These associations remained significant after adjustments for traditional cardiovascular risk factors, multiple indices of glycemic control, cardiovascular disease (CVD), left ventricular ejection fraction (LVEF), and medication (e.g. diuretic) use (adjusted HR for 3-year MACE 2.65 [95% CI 1.16-6.05], P < 0.05; and adjusted HR for 5-year mortality 3.45 [95% CI 1.42-8.39], P < 0.01). NT-proBNP significantly improved the clinical prognostic value (C-statistic, NRI, IDI) for both 3-year MACE and 5-year death when added to models. CONCLUSIONS: NT-proBNP independently predicts increased long-term MACE and mortality risks in prediabetic subjects, and may help identify those for whom more aggressive global preventive efforts are indicated.


Asunto(s)
Enfermedades Cardiovasculares , Infarto del Miocardio , Estado Prediabético , Humanos , Péptido Natriurético Encefálico , Biomarcadores , Volumen Sistólico , Función Ventricular Izquierda , Pronóstico , Fragmentos de Péptidos , Medición de Riesgo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología
19.
J Biol Chem ; 299(11): 105299, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37777156

RESUMEN

Microbes living in the intestine can regulate key signaling processes in the central nervous system that directly impact brain health. This gut-brain signaling axis is partially mediated by microbe-host-dependent immune regulation, gut-innervating neuronal communication, and endocrine-like small molecule metabolites that originate from bacteria to ultimately cross the blood-brain barrier. Given the mounting evidence of gut-brain crosstalk, a new therapeutic approach of "psychobiotics" has emerged, whereby strategies designed to primarily modify the gut microbiome have been shown to improve mental health or slow neurodegenerative diseases. Diet is one of the most powerful determinants of gut microbiome community structure, and dietary habits are associated with brain health and disease. Recently, the metaorganismal (i.e., diet-microbe-host) trimethylamine N-oxide (TMAO) pathway has been linked to the development of several brain diseases including Alzheimer's, Parkinson's, and ischemic stroke. However, it is poorly understood how metaorganismal TMAO production influences brain function under normal physiological conditions. To address this, here we have reduced TMAO levels by inhibiting gut microbe-driven choline conversion to trimethylamine (TMA), and then performed comprehensive behavioral phenotyping in mice. Unexpectedly, we find that TMAO is particularly enriched in the murine olfactory bulb, and when TMAO production is blunted at the level of bacterial choline TMA lyase (CutC/D), olfactory perception is altered. Taken together, our studies demonstrate a previously underappreciated role for the TMAO pathway in olfactory-related behaviors.


Asunto(s)
Percepción Olfatoria , Animales , Ratones , Bacterias/metabolismo , Colina/metabolismo , Metilaminas/metabolismo , Femenino , Ratones Endogámicos C57BL
20.
iScience ; 26(8): 107471, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37599833

RESUMEN

High-protein diets are promoted for individuals with type 2 diabetes (T2D). However, effects of dietary protein interventions on (gut-derived) metabolites in T2D remains understudied. We therefore performed a multi-center, randomized-controlled, isocaloric protein intervention with 151 participants following either 12-week high-protein (HP; 30Energy %, N = 78) vs. low-protein (LP; 10 Energy%, N = 73) diet. Primary objectives were dietary effects on glycemic control which were determined via glycemic excursions, continuous glucose monitors and HbA1c. Secondary objectives were impact of diet on gut microbiota composition and -derived metabolites which were determined by shotgun-metagenomics and mass spectrometry. Analyses were performed using delta changes adjusting for center, baseline, and kidney function when appropriate. This study found that a short-term 12-week isocaloric protein modulation does not affect glycemic parameters or weight in metformin-treated T2D. However, the HP diet slightly worsened kidney function, increased alpha-diversity, and production of potentially harmful microbiota-dependent metabolites, which may affect host metabolism upon prolonged exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...