Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Pharmacokinet ; 51(7): 457-65, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22624502

RESUMEN

BACKGROUND AND OBJECTIVE: Danoprevir, a potent, selective inhibitor of the hepatitis C virus (HCV) NS3/4A protease, is metabolized by cytochrome P450 (CYP) 3A. Clinical studies in HCV patients have shown a potential need for a high danoprevir daily dose and/or dosing frequency. Ritonavir, an HIV-1 protease inhibitor (PI) and potent CYP3A inhibitor, is used as a pharmacokinetic enhancer at subtherapeutic doses in combination with other HIV PIs. Coadministering danoprevir with ritonavir as a pharmacokinetic enhancer could allow reduced danoprevir doses and/or dosing frequency. Here we evaluate the impact of ritonavir on danoprevir pharmacokinetics. METHODS: The effects of low-dose ritonavir on danoprevir pharmacokinetics were simulated using Simcyp, a population-based simulator. Following results from this drug-drug interaction (DDI) model, a crossover study was performed in healthy volunteers to investigate the effects of acute and repeat dosing of low-dose ritonavir on danoprevir single-dose pharmacokinetics. Volunteers received a single oral dose of danoprevir 100 mg in a fixed sequence as follows: alone, and on the first day and the last day of 10-day dosing with ritonavir 100 mg every 12 hours. RESULTS: The initial DDI model predicted that following multiple dosing of ritonavir 100 mg every 12 hours for 10 days, the danoprevir area under the plasma concentration-time curve (AUC) from time zero to 24 hours and maximum plasma drug concentration (C(max)) would increase by about 3.9- and 3.2-fold, respectively. The clinical results at day 10 of ritonavir dosing showed that the plasma drug concentration at 12 hours postdose, AUC from time zero to infinity and C(max) of danoprevir increased by approximately 42-fold, 5.5-fold and 3.2-fold, respectively, compared with danoprevir alone. The DDI model was refined with the clinical data and sensitivity analyses were performed to better understand factors impacting the ritonavir-danoprevir interaction. CONCLUSION: DDI model simulations predicted that danoprevir exposures could be successfully enhanced with ritonavir coadministration, and that a clinical study confirming this result was warranted. The clinical results demonstrate that low-dose ritonavir enhances the pharmacokinetic profile of low-dose danoprevir such that overall danoprevir exposures can be reduced while sustaining danoprevir trough concentrations.


Asunto(s)
Lactamas/farmacocinética , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/farmacocinética , Ritonavir/farmacología , Sulfonamidas/farmacocinética , Adulto , Simulación por Computador , Estudios Cruzados , Ciclopropanos , Interacciones Farmacológicas , Femenino , Humanos , Isoindoles , Lactamas/sangre , Lactamas Macrocíclicas , Masculino , Modelos Biológicos , Prolina/análogos & derivados , Inhibidores de Proteasas/sangre , Sulfonamidas/sangre , Proteínas no Estructurales Virales/antagonistas & inhibidores , Adulto Joven
2.
Cancer Chemother Pharmacol ; 64(4): 691-706, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19169880

RESUMEN

PURPOSE: The purpose of these extensive non-clinical studies was to assess pharmacokinetics and dispositional properties of sunitinib and its primary active metabolite (SU12662). METHODS: Sunitinib was administered in single and repeat oral doses in mice, rats, and monkeys. Assessments were made using liquid-chromatography-tandem mass spectrometric methods, radioactive assays, and quantitative whole body autoradiography. RESULTS: Sunitinib was readily absorbed with good oral bioavailability and linear kinetics at clinically-relevant doses. SU12662 plasma levels were less than those of sunitinib in mice and monkeys, but greater in rats. Sunitinib was extensively distributed with moderate-to-high systemic clearance and eliminated primarily into feces. Single- and repeat-dosing kinetics were similar. A prolonged half-life allowed once-daily dosing, enabling adequate systemic exposure with limited-to-moderate accumulation. In multiple-dose studies with cyclic dosing, drug plasma concentrations cleared from one cycle to the next. CONCLUSIONS: Sunitinib exhibited advantageous pharmacokinetic and dispositional properties in non-clinical species, translating into favorable properties in humans.


Asunto(s)
Antineoplásicos/farmacocinética , Indoles/farmacocinética , Inhibidores de Proteínas Quinasas/farmacocinética , Pirroles/farmacocinética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Antineoplásicos/sangre , Área Bajo la Curva , Cromatografía Líquida de Alta Presión , Femenino , Indoles/administración & dosificación , Indoles/sangre , Macaca fascicularis , Masculino , Ratones , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/sangre , Pirroles/administración & dosificación , Pirroles/sangre , Ratas , Ratas Sprague-Dawley , Sunitinib , Espectrometría de Masas en Tándem
3.
Mol Cancer Ther ; 5(7): 1774-82, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16891463

RESUMEN

Receptor tyrosine kinases (RTK), such as vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor receptor (KIT), and fms-like tyrosine kinase 3 (FLT3), are expressed in malignant tissues and act in concert, playing diverse and major roles in angiogenesis, tumor growth, and metastasis. With the exception of a few malignancies, seemingly driven by a single genetic mutation in a signaling protein, most tumors are the product of multiple mutations in multiple aberrant signaling pathways. Consequently, simultaneous targeted inhibition of multiple signaling pathways could be more effective than inhibiting a single pathway in cancer therapies. Such a multitargeted strategy has recently been validated in a number of preclinical and clinical studies using RTK inhibitors with broad target selectivity. SU14813, a small molecule identified from the same chemical library used to isolate sunitinib, has broad-spectrum RTK inhibitory activity through binding to and inhibition of VEGFR, PDGFR, KIT, and FLT3. In cellular assays, SU14813 inhibited ligand-dependent and ligand-independent proliferation, migration, and survival of endothelial cells and/or tumor cells expressing these targets. SU14813 inhibited VEGFR-2, PDGFR-beta, and FLT3 phosphorylation in xenograft tumors in a dose- and time-dependent fashion. The plasma concentration required for in vivo target inhibition was estimated to be 100 to 200 ng/mL. Used as monotherapy, SU14813 exhibited broad and potent antitumor activity resulting in regression, growth arrest, or substantially reduced growth of various established xenografts derived from human or rat tumor cell lines. Treatment in combination with docetaxel significantly enhanced both the inhibition of primary tumor growth and the survival of the tumor-bearing mice compared with administration of either agent alone. In summary, SU14813 inhibited target RTK activity in vivo in association with reduction in angiogenesis, target RTK-mediated proliferation, and survival of tumor cells, leading to broad and potent antitumor efficacy. These data support the ongoing phase I clinical evaluation of SU14813 in advanced malignancies.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/uso terapéutico , Indoles/uso terapéutico , Morfolinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular , Humanos , Indoles/química , Indoles/farmacología , Ratones , Morfolinas/química , Morfolinas/farmacología , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Células Tumorales Cultivadas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Clin Cancer Res ; 9(1): 327-37, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12538485

RESUMEN

One challenging aspect in the clinical development of molecularly targeted therapies, which represent a new and promising approach to treating cancers, has been the identification of a biologically active dose rather than a maximum tolerated dose. The goal of the present study was to identify a pharmacokinetic/pharmacodynamic relationship in preclinical models that could be used to help guide selection of a clinical dose. SU11248, a novel small molecule receptor tyrosine kinase inhibitor with direct antitumor as well as antiangiogenic activity via targeting the vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), KIT, and FLT3 receptor tyrosine kinases, was used as the pharmacological agent in these studies. In mouse xenograft models, SU11248 exhibited broad and potent antitumor activity causing regression, growth arrest, or substantially reduced growth of various established xenografts derived from human or rat tumor cell lines. To predict the target SU11248 exposure required to achieve antitumor activity in mouse xenograft models, we directly measured target phosphorylation in tumor xenografts before and after SU11248 treatment and correlated this with plasma inhibitor levels. In target modulation studies in vivo, SU11248 selectively inhibited Flk-1/KDR (VEGF receptor 2) and PDGF receptor beta phosphorylation (in a time- and dose-dependent manner) when plasma concentrations of inhibitor reached or exceeded 50-100 ng/ml. Similar results were obtained in a functional assay of VEGF-induced vascular permeability in vivo. Constant inhibition of VEGFR2 and PDGF receptor beta phosphorylation was not required for efficacy; at highly efficacious doses, inhibition was sustained for 12 h of a 24-h dosing interval. The pharmacokinetic/pharmacodynamic relationship established for SU11248 in these preclinical studies has aided in the design, selection, and evaluation of dosing regimens being tested in human trials.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Indoles/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirroles/farmacología , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , División Celular/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Cinética , Ratones , Ratones Desnudos , Modelos Químicos , Trasplante de Neoplasias , Fosforilación , Sunitinib , Factores de Tiempo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...