Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748684

RESUMEN

Neutrophils are essential cells involved in inflammation. However, the specific mechanism of neutrophil chemotaxis induced by Treponema Pallidum (T. pallidum) remains unknow. In this study, human umbilical vein endothelial cells (HUVECs) were utilized as target cells to investigate the expression levels of chemokines when stimulated with different concentrations of Tp0768(also known as TpN44.5 or TmpA, a T. pallidum infection dependent antigen). The results indicated that Tp0768 treatment enhanced neutrophil chemotaxis in HUVECs, which was closely associated with the expression levels of CXCL1(C-X-C Motif Chemokine Ligand 1), CXCL2(C-X-C Motif Chemokine Ligand 2), and CXCL8(C-X-C Motif Chemokine Ligand 8, also known as interleukin-8). At the same time, the results show that Toll Like Receptor 2 (TLR2) signaling pathway is activated and endoplasmic reticulum stress (ER stress) occurs. Furthermore, the findings revealed that the use of protein kinase RNA-like endoplasmic reticulum kinase (PERK) and Immunoglobulin-Regulated Enhancer 1 (IRE1) inhibitors reduced the expression levels of CXCL1, CXCL2, and CXCL8. Additionally, inhibiting TLR2 significantly decreased the expression levels of ER stress-related proteins (PERK and IRE1), CXCL1, CXCL2, and CXCL8. Consequently, neutrophil chemotaxis was significantly inhibited after treatment with TLR2, PERK, and IRE1 inhibitors. These findings shed light on the role of Tp0768 in enhancing neutrophil chemotaxis in endothelial cells, providing a foundation for further exploration of syphilis pathogenesis and offering a new direction for the diagnosis and treatment of T. pallidum infection.

2.
Clin Chim Acta ; 560: 119754, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815665

RESUMEN

Syphilis, a sexually transmitted infection caused by Treponema pallidum, has been experiencing a rise in prevalence in recent years. "Syphilis serofast" describes a unique serological reaction in patients with syphilis whose clinical symptoms have resolved following consistent anti-syphilitic therapy, but the non-Treponema pallidum antigen serologic test is still positive. Syphilis serofast is a risk factor for syphilis recurrence, neurosyphilis, and multisystem involvement. Considering the current lack of comprehensive knowledge about the epidemiological characteristics, pathogenesis, and therapies of syphilis serofast, we conducted an online search of research relating to syphilis serofast over the last twenty years. Previous research has shown that the pathogenesis of syphilis serofast is mainly related to clinical factors, immune factors, syphilis subtypes, and T.pallidum membrane protein repeat gene antigen. There are two distinct viewpoints on the treatment of serofast: no excessive treatment and active treatment. In addition, serofast patients also showed two clinical outcomes: syphilis recurrence and persistent serofast status. This article systematically reviews the related factors, treatment, and clinical outcomes of syphilis serofast, provides a theoretical basis for its research, diagnosis, and treatment, and helps clinicians develop a follow-up treatment management plan for syphilis serofast.

3.
Biomed Pharmacother ; 173: 116354, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442673

RESUMEN

Angiogenesis is the growth of new blood vessels on preexisting ones. It is the outcome of a multifactorial effect involving several cells, which can be brought on by different stress reactions.The accumulation of unfolded proteins in the endoplasmic reticulum occurs when cells are stressed due to environmental changes, where physical or chemical stimuli induce endoplasmic reticulum stress, thereby activating the unfolded protein response (UPR), a homeostasis response designed to re-establish protein balance. Ferroptosis is a planned death of lipid peroxidation and anomalies in metabolism that is dependent on iron. Large concentrations of iron ions accumulate there, along with high concentrations of lipid peroxides and reactive oxygen species, all of which can contribute to the development of several diseases. Through the production of growth factors, adhesion factors, and inflammatory factors that trigger the start of angiogenesis, both UPR and Ferroptosis can be implicated in angiogenesis.To set the stage for further research on angiogenesis, this work concentrated on the effects of Ferroptosis and UPR on angiogenesis, respectively.


Asunto(s)
Ferroptosis , Angiogénesis , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico/fisiología , Hierro
4.
Front Mol Biosci ; 10: 1315935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38131014

RESUMEN

Ferroptosis is a type of programmed cell death that pathogens can leverage to enhance their replication, transmission, and pathogenicity. Hosts typically combat pathogenic infections by utilizing oxidative stress as a defense mechanism. Nonetheless, some pathogens can trigger considerable oxidative stress while infecting, inducing an intense inflammatory response in the host's immune system and activating cell death. The process of ferroptosis is closely linked to oxidative stress, with their interaction exerting a substantial impact on the outcome of infectious diseases. This article presents an overview of the interrelated mechanisms of both Ferroptosis and oxidative stress in infectious diseases, identifying potential targets for treating such diseases in the context of their interaction.

5.
Mol Microbiol ; 119(1): 86-100, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36480422

RESUMEN

Endothelial cell injury is a key factor in the spread of infection and pathogenicity of Treponema pallidum. The migration and adhesion reaction mediated by T. pallidum lipoprotein plays an important role. This study aimed to systematically explore the migration and adhesion effect of T. pallidum lipoprotein Tp0768 and its molecular mechanism. Stimulating vascular endothelial cells with Tp0768 increased the expression of ICAM-1, MCP-1, and IL-8. Moreover, it promoted the migration and adhesion of THP-1 cells to vascular endothelial cells. Our results revealed that Tp0768 promoted the THP-1 cells migrating and adhering to vascular endothelial cells by the PERK and IRE-1α pathways of endoplasmic reticulum (ER) stress. We further demonstrated that the inhibition of the NF-κB pathway and the downregulation of hypoxia-inducible factor 1 alpha (HIF-1α) reduced the mRNA levels of ICAM-1, MCP-1, and IL-8 induced by Tp0768. Also, the adhesion rate of THP-1 cells to endothelial cells decreased. After inhibiting ER stress, NF-κB p65 nuclear translocation was weakened, and the mRNA level of HIF-1α was also significantly downregulated. Our results indicated that T. pallidum lipoprotein Tp0768 promoted the migration and adhesion of THP-1 cells to vascular endothelial cells through ER stress and NF-κB/HIF-1α pathway.


Asunto(s)
FN-kappa B , Treponema pallidum , Humanos , FN-kappa B/metabolismo , Treponema pallidum/genética , Treponema pallidum/metabolismo , Células THP-1 , Molécula 1 de Adhesión Intercelular/genética , Células Endoteliales/metabolismo , Interleucina-8 , ARN Mensajero/metabolismo , Retículo Endoplásmico/metabolismo
6.
Infection ; 51(2): 305-321, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36260281

RESUMEN

BACKGROUND: Syphilis is a chronic sexually transmitted disease caused by Treponema pallidum subspecies pallidum (T. pallidum), which is a public health problem that seriously affects human health worldwide. T. pallidum is characterized by early transmission and immune escape and is therefore termed an "invisible pathogen". METHODS: This review systematically summarizes the host's innate and adaptive immune responses to T. pallidum infection as well as the escape mechanisms of T. pallidum. PURPOSE: To lay the foundation for assessing the pathogenic mechanism and the systematic prevention and treatment of syphilis. CONCLUSION: The immune escape mechanism of T. pallidum plays an important role in its survival. Exploring the occurrence and development of these mechanisms has laid the foundation for the development of syphilis vaccine.


Asunto(s)
Sífilis , Treponema pallidum , Humanos , Vacunas Bacterianas
7.
DNA Cell Biol ; 41(11): 924-934, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36356165

RESUMEN

Endoplasmic reticulum (ER) stress and oxidative stress (OS) are often related states in cells as part of normal physiology but more frequently manifested in the pathophysiology of many diseases, particularly diseases involving acute or chronic inflammation. In this study, we reviewed recent findings about the role of ER stress and OS in the pathogenesis of inflammatory diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Estrés Oxidativo , Humanos , Estrés del Retículo Endoplásmico/fisiología , Estrés Oxidativo/fisiología , Inflamación , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...