Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Biol Macromol ; 263(Pt 2): 130452, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417755

RESUMEN

As a traditional Chinese medicinal and edible homologous plant, Onosma glomeratum Y. L. Liu has been used for treating lung diseases in Tibet. In this study, a pectin polysaccharide, OGY-LLPA, with a molecular weight of 62,184 Da, was isolated and characterized by GC-MS and NMR analysis. It mainly consists of galacturonic acid (GalA), galactose (Gal), rhamnose (Rha), and arabinose (Ara), with a linear main chain of galacturonic acid (homogalacturonan, HG) inserted by part of rhamnose galacturonic acid (rhamnogalacturonan, RG), attaching with arabinogalactan (AG) branches at RG-I. Both in the LPS-induced A549 cell model and LPS-induced pneumonia mouse model, OGY-LLPA demonstrated strong anti-inflammatory effects, even comparable to DEX, indicating its potential as an anti-pneumonia candidate agent. Moreover, low-dose OGY-LLPA alleviated LPS-induced pulmonary inflammation by inhibiting the NF-κB signaling pathway. Overall, these findings could not only contribute to the utilization of Onosma glomeratum Y. L. Liu., but also provides a theoretical basis for the treatment of inflammation-related diseases.


Asunto(s)
Ácidos Hexurónicos , FN-kappa B , Neumonía , Ratones , Animales , Lipopolisacáridos , Ramnosa , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/análisis , Transducción de Señal , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico
2.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298240

RESUMEN

In recent years, infections caused by multidrug-resistant (MDR) bacteria have greatly threatened human health and imposed a burden on global public health. To overcome this crisis, there is an urgent need to seek effective alternatives to single antibiotic therapy to circumvent drug resistance and prevent MDR bacteria. According to previous reports, cinnamaldehyde exerts antibacterial activity against drug-resistant Salmonella spp. This study was conducted to investigate whether cinnamaldehyde has a synergistic effect on antibiotics when used in combination, we found that cinnamaldehyde enhanced the antibacterial activity of ceftriaxone sodium against MDR Salmonella in vitro by significantly reduced the expression of extended-spectrum beta-lactamase, inhibiting the development of drug resistance under ceftriaxone selective pressure in vitro, damaging the cell membrane, and affecting its basic metabolism. In addition, it restored the activity of ceftriaxone sodium against MDR Salmonella in vivo and inhibited peritonitis caused by ceftriaxone resistant strain of Salmonella in mice. Collectively, these results revealed that cinnamaldehyde can be used as a novel ceftriaxone adjuvant to prevent and treat infections caused by MDR Salmonella, mitigating the possibility of producing further mutant strains.


Asunto(s)
Antibacterianos , Ceftriaxona , Humanos , Animales , Ratones , Ceftriaxona/farmacología , Antibacterianos/farmacología , Salmonella , Acroleína/farmacología , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
3.
Bioorg Chem ; 138: 106643, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329815

RESUMEN

1,4-naphthoquinones are the most widespread naphthoquinone compounds. Recently, many 1,4-naphthoquinone glycosides with different structural features have been obtained from both nature and synthesis, which has led to an increasing variety of naphthoquinone glycosides. In this paper, the structure variety and biological activity in recent 20 years are reviewed, and classified them according to the source and structure characteristics. Meanwhile the synthetic methods of O-, S-, C- and N-naphthoquinone glycosides and their structure activity relationships are also described. It was referred that the presence of polar groups of C2 and C5 and non-polar groups attached to C3 on the naphthoquinone ring are beneficial for their biological activities. It will provide more comprehensive literature resources for the future research of 1, 4-naphthoquinone glycosides and lay a theoretical foundation.


Asunto(s)
Glicósidos , Naftoquinonas , Glicósidos/farmacología , Glicósidos/química , Relación Estructura-Actividad , Naftoquinonas/farmacología , Naftoquinonas/química
4.
Bioorg Chem ; 135: 106501, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37015152

RESUMEN

As one of the most common malignancies in female dogs, no drugs have been developed specifically for the treatment of canine mammary carcinoma. In our previous study, a series of diterpenoid alkaloids derivatives were synthesized and exhibited good anti-proliferative activity in vitro against both normal and adriamycin-resistant human breast cancer cells lines. In this study, a series of structurally diverse aconitine-type alkaloids derivatives were also synthesized basing on the minimal modification principle, by modifying on A-ring, C-ring, D-ring, N-atom or salt formation on aconitine skeleton. Their anti-proliferative effects and mechanism on canine mammary cancer cells were investigated, exhibiting the importance of the substitution at A ring, the long chain ester at the C8, the hydroxyl group at the C13, the phenyl ring at the C14 and the N-ethyl group, while the methoxy group at the C1 and C16 showed little effect on the activity. The results of the proliferation, apoptosis and ultrastructure tests of the treated canine mammary carcinoma cells referred that the representative compound, aconitine linoleate (25) could block the cell cycle of canine mammary carcinoma cells in the G0/G1 phase, and exhibit the anti-proliferative effect by inducing apoptosis.


Asunto(s)
Alcaloides , Neoplasias de la Mama , Carcinoma , Diterpenos , Perros , Animales , Femenino , Humanos , Aconitina/farmacología , Aconitina/química , Neoplasias de la Mama/tratamiento farmacológico , Alcaloides/farmacología , Alcaloides/química , Diterpenos/farmacología , Diterpenos/química
5.
Biomed Pharmacother ; 160: 114271, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36724642

RESUMEN

BACKGROUND: Pseudorabies virus (PRV) infections in susceptible non-porcine species trigger uncontrolled inflammations and eventually fatal encephalitis. Resveratrol (Res) has broad pharmacological functions including anti-virus, anti-inflammation, and neuroprotective. PURPOSE: We attempted to investigate the potential of Res in ameliorating PRV infection pathology in mice and decipher the mechanism of Res in treating PRV. METHODS: The mice were infected by PRV to investigate the protective effect of Res. Blood-brain barrier (BBB) permeability, H&E/Nissl/TUNEL staining, Real-time PCR and ELISA analyses were performed. Primary microglia and neuron were isolated from mice and cultured. The co-culture model of microglia and neuron was established by transwell. Immunofluorescence assay and flow cytometry were used. RESULTS: In this study, we showed that Res ameliorated brain damage by reducing BBB permeability in PRV-infected mice, and diminished the expressions of MMP-2, MMP-9 and ZO-1 in the cortex. Pathological changes of neurons by H&E/Nissl/TUNEL staining suggested that Res could alleviate neuronal lesions. Moreover, Res inhibited the expressions of pro-inflammatory factors (IL-6, TNF-α) and chemokines (CCL3, CXCL10, MCP-1), but increased the expressions of anti-inflammatory factors (IL-4, IL-10) and neurotrophic factor (TGF-ß, NGF and GDNF) in brain. In vitro cultured microglia cells, Res could suppress M1 microglia polarization and activate M2 microglia polarization. Co-culture of PRV-infected microglia with neuron cells by transwell system indicated that Res alleviated inflammatory response and neuronal apoptosis. CONCLUSION: This study provided evidence that Res could protect mice from PRV-induced encephalitis through regulation of microglia polarization and neuronal apoptosis suggesting the potential for treatment of viral encephalitis.


Asunto(s)
Encefalitis , Herpesvirus Suido 1 , Ratones , Animales , Microglía , Resveratrol/farmacología , Enfermedades Neuroinflamatorias , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Encefalitis/metabolismo
6.
Bioorg Chem ; 132: 106342, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36621157

RESUMEN

The privileged structure binds to multiple receptors with high affinity, which is helpful to the development of new bioactive compounds. Indole is classified as a privileged structure, which may be one of the most important structural categories in drug discovery. As a special subset of indole compounds, 2-phenylindole seems to be one of most promising forerunners of drug development. In this paper, 106 articles were referenced to review the structural changes, biological activities and structure-activity relationship of compounds in recent 20 years, and classified them according to their pharmacological activities, from several aspects, including anticancer, antibacterial, anti-inflammatory, analgesic, antiviral, anti-parasite, the biological activities target to central nervous system, et al. It also points out the importance of artificial intelligence (AI) technology in discovery of new 2-phenylindole compounds in a broader prospect. This review will provide some ideas for researchers to develop new indole drugs.


Asunto(s)
Antibacterianos , Inteligencia Artificial , Relación Estructura-Actividad , Antibacterianos/farmacología , Indoles/farmacología , Indoles/química , Antiinflamatorios no Esteroideos/farmacología
7.
Prep Biochem Biotechnol ; 53(8): 923-930, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36576214

RESUMEN

Onosma hookeri Clarke. var. longiforum Duthie (OHC-LD), one of the traditional Tibetan medicine, has been found many functions, including removing heat to cool blood, nourishing lung and inhibiting bacteria. In order to study the polysaccharides in OHC-LD water extract, the optimal extraction progress of polysaccharides of the roots of OHC-LD by response surface method designed with three-factor three-level Box-Behnken method and the antioxidant capacity and immune activity of the crude polysaccharide were studied in this investigation. Under the best conditions, the extraction yield of polysaccharide was 3.19±0.09% (n = 3). After purification, the crude polysaccharide was obtained with polysaccharide contents of 42.57%, which demonstrated stronger DPPH scavenging activity than BHT at low concentrations (<625 µg/mL), and comparable ABTS radical scavenging activity as BHT at high concentrations (≥1250 µg/mL). Additionally, it also exhibited a certain cell proliferation activity and an enhancement of the phagocytic ability of RAW264.7 cells. This study revealed that the crude polysaccharide from the roots of OHC-LD might be exploited as a natural antioxidant and immune enhance agent in the future in both medical and food industry.


Asunto(s)
Antioxidantes , Agua , Antioxidantes/química , Polisacáridos/química , Raíces de Plantas
8.
J Sci Food Agric ; 103(1): 328-338, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35871477

RESUMEN

BACKGROUND: This study characterized an acidic polysaccharide (OHC-LDPA) isolated from the medicinal and edible homologous plant Onosma hookeri Clarke var. longiforum Duthie. The structure of OHC-LDPA was elucidated based on the analysis of infrared, one-/two-dimensional nuclear magnetic resonance, and gas chromatography-mass spectrometry data. The immunostimulatory effects of OHC-LDPA were identified by both in vitro and in vivo models. RESULTS: The structure of OHC-LDPA was elucidated as a typical pectin polysaccharide, consisting of galacturonic acid, galactose, arabinose, and rhamnose as the primary sugars, with linear galacturonic acid as the main chain and arabinogalacturonic acid as the main branched components. OHC-LDPA could significantly stimulate the proliferation and phagocytosis of RAW264.7 macrophages and the release of nitric oxide in vitro. Also, it could accelerate the recovery of spleen and thymus indexes, enhance the splenic lymphocyte proliferation responses, and restore the levels of interleukin-2, interleukin-10, interferon-γ, and immunoglobulin G in the serum in a cyclophosphamide-induced immunosuppressed-mice model. In addition, OHC-LDPA could restore the intestinal mucosal immunity and reduce the inflammatory damage. CONCLUSION: OHC-LDPA could improve the immunity both in vitro and in vivo and could be used as a potential immunostimulant agent. © 2022 Society of Chemical Industry.


Asunto(s)
Boraginaceae , Polisacáridos , Ratones , Animales , Polisacáridos/farmacología , Polisacáridos/química , Ácidos Hexurónicos , Fagocitosis , Células RAW 264.7
9.
Front Pharmacol ; 13: 1010593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330094

RESUMEN

Fungal-infections are mostly due to fungi in an adhering, biofilm-mode of growth and not due to planktonically growing, suspended-fungi. 1, 8-cineole is a natural product, which has been shown to possess antifungal effect. However, the anti-biofilm effect and mechanism of 1,8-cineole against Fusarium solani species complex has not reported previously. In this study, we found that 1,8-cineole has a good antifungal activity against F. solani with an MIC value of 46.1 µg/ml. Notably, 1,8-cineole showed good anti-biofilm formation activity against F. solani via inhibiting cell adhesion, hypha formation and decreasing the secretion of extracellular matrix at the concentration of ≥5.76 µg/ml. In addition, transcriptome sequencing analysis results showed that F. solani species complex genes related to ECM, protein synthesis and energy metabolism were down-expressed in the biofilms formation process treated with 1,8-cineole. In conclusion, these results show that 1,8-cineole has good anti-biofilm formation activity against F. solani species complex, and it exerts its anti-biofilm formation activity by downregulating of ergosterol biosynthetic genes, inhibiting adhesion, hindering the synthesis of ECM and interfering mitochondrial activity. This study suggests that 1,8-cineole is a promising anti-biofilm agent against F. solani species complex.

10.
Front Microbiol ; 13: 960728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147840

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is among the common drug resistant bacteria, which has gained worldwide attention due to its high drug resistance and infection rates. Biofilms produced by S. aureus are known to increase antibiotic resistance, making the treatment of S. aureus infections even more challenging. Hence, inhibition of biofilm formation has become an alternative strategy for controlling persistent infections. In this study, we evaluated the efficacy of geraniol as a treatment for MRSA biofilm infection. The results of crystal violet staining indicated that 256 µg/mL concentration of geraniol inhibited USA300 biofilm formation by 86.13% and removed mature biofilms by 49.87%. Geraniol exerted its anti-biofilm effect by influencing the major components of the MRSA biofilm structure. We found that geraniol inhibited the synthesis of major virulence factors, including staphyloxanthin and autolysins. The colony count revealed that geraniol inhibited staphyloxanthin and sensitized USA300 cells to hydrogen peroxide. Interestingly, geraniol not only reduced the release of extracellular nucleic acids (eDNA) but also inhibited cell autolysis. Real-time polymerase chain reaction data revealed the downregulation of genes involved in biofilm formation, which verified the results of the phenotypic analysis. Geraniol increased the effect of vancomycin in eliminating USA300 biofilms in a mouse infection model. Our findings revealed that geraniol effectively inhibits biofilm formation in vitro. Furthermore, in combination with vancomycin, geraniol can reduce the biofilm adhesion to the implant in mice. This suggests the potential of geraniol as an anti-MRSA biofilm drug and can provide a solution for the clinical treatment of biofilm infection.

11.
Medicine (Baltimore) ; 101(34): e30194, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36042609

RESUMEN

BACKGROUND: Alzheimer disease (AD) is a degenerative brain disease, which may lead to severe memory loss and other cognitive disorders. However, few effective drugs are available in the clinic at present. Curcumin, a major ingredient of traditional Chinese medicine, Curcuma Longa, has various pharmacological activities. Therefore, exploring clinical drugs based on the inhibition of AD pathological features is imperative. METHODS: First, we utilized the HERB database and Swisstarget Prediction database to get the related targets of curcumin and intersected with the AD targets. The intersection targets were used to construct the protein-protein interaction network and performed gene ontology and kyoto encyclopedia of genes and genomes analyses. Further, we obtained targets of curcumin against AD-related tau and aß pathology via the AlzData database. These targets were applied to perform GEO and receiver operating characteristic analyses. Finally, the reliability of the core targets was evaluated using molecular docking technology. RESULTS: We identified 49 targets of curcumin against AD, and kyoto encyclopedia of genes and genomes pathway enrichment analysis demonstrated that the Alzheimer disease pathway (has05010) was significantly enriched. Even more, we obtained 16 targets of curcumin-related Aß and tau pathology. Among these targets, 8 targets involved the Alzheimer disease pathway and the biological process analyses showed that positive regulation of cytokine production (GO:0001819) was significantly enriched. Bioinformatic analyses indicated that HMOX1, CSF1R, NFKB1, GSK3B, BACE1, AR, or PTGS1 expression was significantly different compared to the control group in the AD patients. Finally, molecular docking studies suggested these genes have a good binding force with curcumin. CONCLUSIONS: In this study, we identified curcumin exerted the effect of treating AD by regulating multitargets and multichannels through the method of network pharmacology.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Medicamentos Herbarios Chinos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Ácido Aspártico Endopeptidasas/genética , Curcumina/farmacología , Curcumina/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Farmacología en Red , Reproducibilidad de los Resultados , Transducción de Señal/genética
12.
Oxid Med Cell Longev ; 2022: 2459212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847587

RESUMEN

The development of novel therapeutics to treat multidrug-resistant pathogenic infections like Salmonella gallinarum is the need of the hour. Salmonella infection causes typhoid fever, jaundice, and Salmonella hepatitis resulting in severe liver injury. Natural compounds have been proved beneficial for the treatment of these bacterial infections. The beneficial roles of cinnamaldehyde due to its antibacterial, anti-inflammatory, and antioxidative properties have been determined by many researchers. However, alleviation of liver damage caused by S. gallinarum infection to young chicks by cinnamaldehyde remains largely unknown. Therefore, this study was performed to identify the effects of cinnamaldehyde on ameliorating liver damage in young chicks. Young chicks were intraperitoneally infected with S. gallinarum and treated with cinnamaldehyde orally. Liver and serum parameters were investigated by qRT-PCR, ELISA kits, biochemistry kits, flow cytometry, JC-1 dye experiment, and transcriptome analysis. We found that ROS, cytochrome c, mitochondrial membrane potential (Ψm), caspase-3 activity, ATP production, hepatic CFU, ALT, and AST, which were initially increased by Salmonella infection, significantly (P < 0.05) decreased by cinnamaldehyde treatment at 1, 3, and 5 days postinfection (DPI). In addition, S. gallinarum infection significantly increased proinflammatory gene expression (IL-1ß, IL-6, IL-12, NF-κB, TNF-α, and MyD-88) and decreased the expression of anti-inflammatory genes (IL-8, IL-10, and iNOS); however, cinnamaldehyde reverted these effects at 1, 3, and 5 DPI. Transcriptome analysis showed that S. gallinarum modulates certain genes of the AMPK-mTOR pathway for its survival and replication, and these pathway modulations were reversed by cinnamaldehyde treatment. We concluded that cinnamaldehyde ameliorates inflammation and apoptosis by suppressing NF-Kß/caspase-3 pathway and reverts the metabolic changes caused by S. gallinarum infection via modulating the AMPK-mTOR pathway. Furthermore, cinnamaldehyde has antibacterial, anti-inflammatory, antioxidative, and antiapoptotic properties against S. gallinarum-challenged young chicks and can be a candidate novel drug to treat salmonellosis in poultry production.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Proteínas Quinasas Activadas por AMP , Acroleína/análogos & derivados , Animales , Antibacterianos , Apoptosis , Caspasa 3 , Pollos , Hepatocitos , Estrés Oxidativo , Enfermedades de las Aves de Corral/microbiología , Salmonella , Salmonelosis Animal/microbiología , Serina-Treonina Quinasas TOR
13.
Naunyn Schmiedebergs Arch Pharmacol ; 395(1): 65-76, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34727218

RESUMEN

Aconitine linoleate (1) is a lipo-diterpenoid alkaloid, isolated from Aconitum sinchiangense W. T. Wang. The study aimed at investigating the anti-proliferative efficacy and the underlying mechanisms of 1 against MCF-7 and MCF-7/ADR cells, as well as obvious the safety evaluation in vivo. The cytotoxic activities of 1 were measured in vitro. Also, we investigated the latent mechanism of 1 by cell cycle analysis in MCF-7/ADR cells and topo I and topo IIα inhibition assay. Molecular docking is done by Discovery Studio 3.5 and Autodock vina 1.1.2. Finally, the acute toxicity of 1 was detected on mice. 1 exhibited significant antitumor activity against both MCF-7 and MCF-7/ADR cells, with IC50 values of 7.58 and 7.02 µM, which is 2.38 times and 5.05 times more active, respectively than etoposide in both cell lines, and being 9.63 times more active than Adriamycin in MCF-7/ADR cell lines. The molecular docking and the topo inhibition test found that it is a selective inhibitor of topoisomerase IIα. Moreover, activation of the damage response pathway of the DNA leads to cell cycle arrest at the G0G1 phase. Furthermore, the in vivo acute toxicity of 1 in mice displayed lower toxicity than aconitine, with LD50 of 2.2 × 105 nmol/kg and only slight pathological changes in liver and lung tissue, 489 times safer than aconitine. In conclusion, compared with aconitine, 1 has more significant anti-proliferative activity against MCF-7 and MCF-7/ADR cells and greatly reduces in vivo toxicity, which suggests this kind of lipo-alkaloids is powerful and promising antitumor compounds for breast cancer.


Asunto(s)
Aconitina/farmacología , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Aconitina/administración & dosificación , Aconitina/toxicidad , Aconitum/química , Animales , Animales no Consanguíneos , Proliferación Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Ácido Linoleico/química , Células MCF-7 , Masculino , Ratones , Simulación del Acoplamiento Molecular , Células 3T3 NIH , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores
14.
Sci Total Environ ; 798: 149268, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34333432

RESUMEN

Antimicrobial resistance (AMR) has become a public health concern; but antibiotic resistance genes (ARGs) and integrons that link to AMR of Escherichia coli from non-human primates remain largely unknown. This study aimed to investigate antibiotic resistance, emerging environmental pollutants ARGs, and integrons factors (intI1, intI2 and intI3) in 995 E. coli isolates obtained from 50 species of captive non-human primates of 13 zoos in China. Our result showed 83.62% of the E. coli isolates were resistant to at least one antibiotic and 47.94% isolates showed multiple drug resistances (MDR). The E. coli isolates mainly showed resistance to tetracycline (tetracycline 62.71%, doxycycline 61.11%), ß-lactams (ampicillin 54.27%, amoxicillin 52.36%), and sulfonamide (trimethoprim-sulfamethoxazole 36.78%). A total of 423 antibiotic resistance patterns were observed, of which DOX/TET (49 isolates, 4.92%) was the most common pattern. Antibiotic resistance rates among 13 zoos had a significant difference (P < 0.01). We further detected 22 ARGs in the 995 E. coli isolates, of which tetA had the highest occurrence (70.55%). The presence of integrons class 1 and 2 were 24.22% and 1.71%, respectively, while no class 3 integron was found. Significant positive associations were observed among integrons and antibiotics, of which the strongest association was observed for integrons / Gentamicin (OR, 2.642) and integrons / Cefotaxime (OR, 2.512). In addition, cassette arrays were detected in 64 strains of class 1 integron-positive isolates (26.56%) and 10 strains of class 2 integron-positive isolates (58.82%). Eighteen cassette arrays were found within 64 class 1 integron isolates, while 3 cassette arrays were identified within 10 class 2 integron isolates. Our results indicate a high diversity of antibiotic resistance phenotypes in non-human primate E. coli isolates, which carry multiple ARGs and integrons. Corresponding preventive measures should be taken to prevent the spread of integron-mediated ARGs in non-human primates and their living environments in zoos.


Asunto(s)
Infecciones por Escherichia coli , Integrones , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Integrones/genética , Pruebas de Sensibilidad Microbiana , Prevalencia , Primates
15.
BMC Vet Res ; 17(1): 247, 2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34275451

RESUMEN

BACKGROUND: Pseudorabies virus (PRV), a member of the Alphaherpesviruses, is one of the most important pathogens that harm the global pig industry. Accumulated evidence indicated that PRV could infect humans under certain circumstances, inducing severe clinical symptoms such as acute human encephalitis. Currently, there are no antiviral drugs to treat PRV infections, and vaccines available only for swine could not provide full protection. Thus, new control measures are urgently needed. RESULTS: In the present study, kaempferol exhibited anti-PRV activity in mice through improving survival rate by 22.22 %, which was higher than acyclovir (Positive control) with the survival rate of 16.67 % at 6 days post infection (dpi); meanwhile, the survival rate was 0 % at 6 dpi in the infected-untreated group. Kaempferol could inhibit the virus replication in the brain, lung, kidney, heart and spleen, especially the viral gene copies were reduced by over 700-fold in the brain, which was further confirmed by immunohistochemical examination. The pathogenic changes induced by PRV infection in these organs were also alleviated. The transcription of the only immediate-early gene IE180 in the brain was significantly inhibited by kaempferol, leading to the decreased transcriptional levels of the early genes (EPO and TK). The expression of latency-associated transcript (LAT) was also inhibited in the brain, which suggested that kaempferol could inhibit PRV latency. Kaempferol-treatment could induce higher levels of IL-1ß, IL-4, IL-6, TNF-α and IFN-γ in the serum at 3 dpi which were then declined to normal levels at 5 dpi. CONCLUSIONS: These results suggested that kaempferol was expected to be a new alternative control measure for PRV infection.


Asunto(s)
Antivirales/farmacología , Herpesvirus Suido 1/efectos de los fármacos , Quempferoles/farmacología , Seudorrabia/tratamiento farmacológico , Aciclovir/farmacología , Animales , Encéfalo , Regulación Viral de la Expresión Génica , Genes Inmediatos-Precoces/efectos de los fármacos , Herpesvirus Suido 1/genética , Masculino , Ratones , Seudorrabia/mortalidad , Seudorrabia/patología , Replicación Viral/efectos de los fármacos
16.
Poult Sci ; 100(8): 101255, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34198092

RESUMEN

The antiviral mechanism of sulfated polysaccharides is supposed to prevent virus entry, which is mediated by the interactions of anionic charges on sulfated polysaccharides with positively charged domains of viral envelope glycoproteins, leading to shielding of the functional domain involved in virus attachment to cell surface receptors. But, few direct evidences were reported. In the previous study, we found that sulfated Chuanmingshen violaceum polysaccharides (sCVPS) possessed remarkable inhibitory effect against Newcastle disease virus (NDV) through inhibition of NDV attachment to host cells. Whether sCVPS bound to hemagglutinin-neuraminidase (HN) leading to inhibition of NDV attachment needs to be further clarified. The present study conducted site-directed mutagenesis of possible positively charged residues of HN, and found that mutants R197G, H199G, R363G, and R523G could significantly decrease the inhibitory effects of sCVPS on receptor binding ability through hemadsorption assay, especially R363G which suggested that binding to R363 is more effective to shield the sialic acid binding sites. Dual mutants (R363G/R197G, R363G/H199G and R363G/R523G) induced more decreased inhibitory effect of sCVPS than single mutants. The immunofluorescence study using FITC-labeled sCVPS found that the fluorescence intensity of mutants R363G and R363G/H199G were significantly decreased. The binding kinetics of sCVPS to HN measured by surface plasmon resonance indicated that sCVPS had a higher binding affinity for wild-type HN than mutants R363G and R363G/H199G. Plaque reduction study was performed using recombinant NDV with mutant HNR363G and HNR363G/H199G, which showed significantly decreased inhibitory effects of sCVPS against mutant NDV adsorption to BHK-21 cells. These results suggested that the residues R197, H199, R363, and R523 were the binding sites for sCVPS, especially R363 act as the main interaction site. The present study provided direct evidence for the theory that antiviral mechanism of sulfated polysaccharides attributed to anionic groups binding to the positively charged residues of viral proteins which led to the shielding of receptor binding sites.


Asunto(s)
Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Aminoácidos , Animales , Pollos , Hemaglutininas , Neuraminidasa , Virus de la Enfermedad de Newcastle/genética , Polisacáridos , Sulfatos , Proteínas del Envoltorio Viral
17.
Bioorg Chem ; 113: 105011, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34091289

RESUMEN

In the 21st century, cancer is the major public health problem worldwide. Based on the important roles of protein tyrosine kinase, the accelerated hunt for potent small-molecule tyrosine kinase inhibitors has led to the success of 30 newly inhibitors in this family for the cancer therapy in last five years. In this review, we updated their synthesis methods, and compared the original research routes with the optimized routes for each PTK inhibitor against different target, in order to make an outlook on the future synthesis of potential PTK inhibitors for anticancer therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/síntesis química , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias/patología , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores del Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/metabolismo
18.
Environ Sci Pollut Res Int ; 28(26): 34154-34166, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33966165

RESUMEN

Unsuccessful vaccination against Salmonella due to a large number of serovars, and antibiotic resistance, necessitates the development of novel therapeutics to treat salmonellosis. The development of anti-virulence agents against multi-drug-resistant bacteria is a novel strategy because of its non-bacterial feature. Hence, a thorough study of the type three secretion system (T3SS) of Salmonella would help us better understand its role in bacterial pathogenesis and development of anti-virulence agents. However, T3SS can be inhibited by different chemicals at different stages of infection and sequenced delivery of effectors can be blocked to restrict the progression of disease. This review highlights the role of T3SS-1 in the internalization, survival, and replication of Salmonella within the intestinal epithelium and T3SS inhibitors. We concluded that the better we understand the structures and functions of T3SS, the more we have chances to develop anti-virulence agents. Furthermore, greater insights into the T3SS inhibitors of Salmonella would help in the mitigation of the antibiotic resistance problem and would lead us to the era of new therapeutics against salmonellosis.


Asunto(s)
Infecciones por Salmonella , Salmonella typhimurium , Proteínas Bacterianas , Humanos , Infecciones por Salmonella/tratamiento farmacológico , Sistemas de Secreción Tipo III , Virulencia
19.
Eur J Med Chem ; 220: 113473, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33906047

RESUMEN

A high incidence of cancer has given rise to the development of more anti-tumor drugs. From 2015 to 2020, fifty-six new small-molecule anticancer drugs, divided into ten categories according to their anti-tumor target activities, have been approved. These include TKIs (30 drugs), MAPK inhibitors (3 drugs), CDK inhibitors (3 drugs), PARP inhibitors (3 drugs), PI3K inhibitors (3 drugs), SMO receptor antagonists (2 drugs), AR antagonists (2 drugs), SSTR inhibitors (2 drugs), IDH inhibitors (2 drugs) and others (6 drugs). Among them, PTK inhibitors (30/56) have led to a paradigm shift in cancer treatment with less toxicity and more potency. Each of their structures, approval statuses, applications, SAR analyses, and original research synthesis routes have been summarized, giving us a more comprehensive map for further efforts to design more specific targeted agents for reducing cancer in the future. We believe this review will help further research of potential antitumor agents in clinical usage.


Asunto(s)
Antineoplásicos/farmacología , Aprobación de Drogas , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/química , Inhibidores Enzimáticos/química , Humanos , Neoplasias/enzimología , Bibliotecas de Moléculas Pequeñas/química
20.
Bioorg Chem ; 109: 104699, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33611138

RESUMEN

Aconitine linoleate (11) isolated from the Aconitum sinchiangense W. T. Wang exhibited significant anti-tumor activity. Based on this, a series of novel lipo-diterpenoid alkaloids were synthesized and evaluated for their anticancer activities against MCF-7 and MCF-7/ADR cell lines. Seventeen compounds, including 18-20, 22, 24-32, 36, 39, 41-42 possessed higher anti-proliferative activities (IC50 < 20 µM) against MCF-7 cell lines, which were better than the reference drug etoposide (IC50 = 18.01 ± 1.64 µM), among which compound 24 (IC50 = 4.00 ± 0.30 µM) was found to be the most potent derivative, being 4.5-fold more active than etoposide. Meanwhile, eighteen compounds, including 18-22, 24, 26-32, 36, 38-39, 41-42 presented excellent activities (IC50 < 20 µM) against MCF-7/ADR cell lines, better than etoposide (IC50 = 35.48 ± 0.29 µM) and doxorubicin (IC50 = 67.61 ± 6.5 µM). The most potent compound (19) was 13.5- and 25.7-fold more active than etoposide and doxorubicin against MCF-7/ADR cell lines, respectively. The structure-activity relationship (SAR) studies indicated that the 3-OH, 8-lipo, 14-benzene ring, and nitrogen atom with proper alkaline are crucial elements for anti-proliferative activity of target lipo-diterpenoid compounds. The proper length, the double bonds or di-fluoro-substituted at C-8 fatty acid chain, the para-donating electron group on 14-benzene group, and 13-OH are all favorable for the enhancement of anti-proliferative activities. In conclusion, the introduction of the 8-lipo group into aconitine leads to significant increase of anti-proliferative activity against MCF-7 and MCF-7/ADR cells, which suggests these kinds of lipo-alkaloids are powerful and promising antitumor compounds for breast cancer, especially for drug-resistant breast cancer.


Asunto(s)
Antineoplásicos/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Alcaloides Diterpénicos/química , Alcaloides Diterpénicos/farmacología , Inhibidores de Topoisomerasa II/farmacología , Antineoplásicos/química , Neoplasias de la Mama , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/genética , Doxorrubicina/farmacología , Diseño de Fármacos , Etopósido/farmacología , Femenino , Humanos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...