Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
BMC Vet Res ; 20(1): 362, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129003

RESUMEN

BACKGROUND: Rhodococcus equi (R. equi) is a Gram-positive zoonotic pathogen that frequently leads to illness and death in young horses (foals). This study presents the complete genome sequence of R. equi strain BJ13, which was isolated from a thoroughbred racehorse breeding farm in Beijing, China. RESULTS: The BJ13 genome has a length of 5.30 Mb and consists of a complete chromosome and a plasmid measuring 5.22 Mb and 0.08 Mb, respectively. We predicted 4,929 coding gene open reading frames, along with 52 tRNAs and 12 rRNAs. Through analysis of mobile genetic elements, we identified 6 gene islands and 1 prophage gene. Pathogenic system analysis predicted the presence of 418 virulence factors and 225 drug resistance genes. Secretion system analysis revealed the prediction of 297 secreted proteins and 1,106 transmembrane proteins. BJ13 exhibits genomic features, virulence-associated genes, potential drug resistance, and a virulence plasmid structure that may contribute to the evolution of its pathogenicity. Lastly, the pathogenicity of the isolated strain was assessed through animal experiments, which resulted in inflammatory reactions or damage in the lungs, liver, and spleen of mice. Moreover, by the 7th day post-infection, the mortality rate of the mice reached 50.0%, indicating complex immune regulatory mechanisms, including overexpression of IL-10 and increased production of pro-inflammatory cytokines like TNF-α. These findings validate the strong pathogenicity of the isolated strain and provide insights for studying the pathogenic mechanisms of Rhodococcus equi infection. CONCLUSIONS: The complete genome sequence of R. equi strain BJ13 provides valuable insights into its genomic characteristics, virulence potential, drug resistance, and secretion systems. The strong pathogenicity observed in animal experiments underscores the need for further investigation into the pathogenic mechanisms of R. equi infection.


Asunto(s)
Infecciones por Actinomycetales , Genoma Bacteriano , Enfermedades de los Caballos , Rhodococcus equi , Secuenciación Completa del Genoma , Rhodococcus equi/patogenicidad , Rhodococcus equi/genética , Animales , Caballos , Enfermedades de los Caballos/microbiología , Infecciones por Actinomycetales/veterinaria , Infecciones por Actinomycetales/microbiología , Virulencia/genética , Ratones , Factores de Virulencia/genética , Femenino
2.
Ecotoxicol Environ Saf ; 284: 116849, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39168081

RESUMEN

Parasite infection not only triggers the immune response of the host but also potentially affects the reproductive status, thereby influencing the population size. Therefore, understanding the impact of parasite infection on host immune and reproductive systems has long been an important issue in ecological research. To address this, we conducted field surveys (2021-2023) to investigate Capillaria hepatica infection status in Brandt's vole (Lasiopodomys brandtii) and performed controlled experiments in semi-natural enclosures and indoor laboratories. The results showed a negative correlation between the population size of Brandt's vole and the infection rate. To further explore the regulatory mechanisms, transcriptomic and proteomic analyses were performed on the infected BALB/c mice. The study found that post-infection with Capillaria hepatica, up-regulated genes and proteins in the mice liver were primarily associated with immune functions, while down-regulated genes and proteins were related to metabolic functions such as retinol metabolism. Through validation experiments supplementing retinol to the host infected with Capillaria hepatica, it was found that infection with Capillaria hepatica leads to a decrease in systemic available retinol levels, disrupting the expression of the hypothalamic-pituitary-gonadal (HPG) axis hormones, affecting the expression of CYP17A1, thereby regulating testosterone secretion related to spermatogenesis. This process results in abnormal spermatogenesis in the testes, thereby impacting the reproductive capacity of mice. This suggests that Capillaria hepatica regulates resource allocation in hosts, striking a "trade-off" between reproduction and survival, thereby exerting control over population size. These discoveries are crucial for comprehending the interaction between Capillaria hepatica and hosts, as well as their impacts on host reproduction and immune systems, and provide a scientific basis for controlling the transmission of Capillaria hepatica.

3.
BMC Vet Res ; 20(1): 300, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971814

RESUMEN

BACKGROUND: Clostridium perfringens (C. perfringens) is an important zoonotic microorganism that can cause animal and human infections, however information about the prevalence status in wild birds of this pathogenic bacterium is currently limited. RESULT: In this study, 57 strains of C. perfringens were isolated from 328 fecal samples of wild birds. All the isolates were identified as type A and 70.18% of the isolates carried the cpb2 gene. Antimicrobial susceptibility testing showed that and 22.80% of the isolates were classified as multidrug-resistant strains. The MLST analysis of the 57 isolates from wild birds was categorized into 55 different sequence types (STs) and clustered into eight clonal complexes (CCs) with an average of 20.1 alleles and the Simpson Diversity index (Ds) of 0.9812, and revealed a high level of genetic diversity within the C. perfringens populations. Interestingly, the isolates from swan goose were clustered in the same CC while isolates from other bird species were more scattered suggesting that a potential difference in genetic diversity among the C. perfringens populations associated with different bird species. CONCLUSION: C. perfringens exhibits a wide range of host adaptations, varying degrees of antimicrobial resistance, and a high degree of genetic diversity in wild birds. Understanding the prevalence, toxin type, antimicrobial resistance, and genetic diversity of C. perfringens in wildlife populations is essential for developing effective strategies for disease control and management.


Asunto(s)
Animales Salvajes , Aves , Infecciones por Clostridium , Clostridium perfringens , Farmacorresistencia Bacteriana Múltiple , Variación Genética , Clostridium perfringens/genética , Clostridium perfringens/aislamiento & purificación , Clostridium perfringens/efectos de los fármacos , Animales , Aves/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/epidemiología , Animales Salvajes/microbiología , Heces/microbiología , Tipificación de Secuencias Multilocus/veterinaria , Antibacterianos/farmacología , Enfermedades de las Aves/microbiología , Enfermedades de las Aves/epidemiología , Pruebas de Sensibilidad Microbiana/veterinaria
4.
Int J Parasitol Parasites Wildl ; 24: 100957, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39035104

RESUMEN

Trichomonas gallinae is a globally distributed protozoan parasite that causes avian trichomoniasis, leading to significant morbidity and mortality in birds. The present study aims to investigate the prevalence, genetic diversity, and phylogenetic relationship of T. gallinae in various bird species in Beijing. A total of 413 oropharyngeal swab samples were collected from domestic pigeons, wild pigeons, and other bird species. The overall prevalence of T. gallinae infection was 32.0% (132/413). The infection was detected in domestic pigeons, wild pigeons, and red-necked turtledoves, but not in other wild birds. Molecular analysis identified two predominant genotypes, A and B, with genotype A found in wild pigeons and genotype B found in domestic pigeons. The present study provides valuable insights on the prevalence and genetic diversity of T. gallinae in Beijing. This can be useful for understanding its pathogen distribution and host range, and the development of strategies for the prevention and control of avian trichomoniasis.

5.
Zool Res ; 45(3): 451-463, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38583936

RESUMEN

The gut microbiota significantly influences host physiology and provides essential ecosystem services. While diet can affect the composition of the gut microbiota, the gut microbiota can also help the host adapt to specific dietary habits. The carrion crow ( Corvus corone), an urban facultative scavenger bird, hosts an abundance of pathogens due to its scavenging behavior. Despite this, carrion crows infrequently exhibit illness, a phenomenon related to their unique physiological adaptability. At present, however, the role of the gut microbiota remains incompletely understood. In this study, we performed a comparative analysis using 16S rRNA amplicon sequencing technology to assess colonic content in carrion crows and 16 other bird species with different diets in Beijing, China. Our findings revealed that the dominant gut microbiota in carrion crows was primarily composed of Proteobacteria (75.51%) and Firmicutes (22.37%). Significant differences were observed in the relative abundance of Enterococcus faecalis among groups, highlighting its potential as a biomarker of facultative scavenging behavior in carrion crows. Subsequently, E. faecalis isolated from carrion crows was transplanted into model mice to explore the protective effects of this bacterial community against Salmonella enterica infection. Results showed that E. faecalis down-regulated the expression of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and interleukin 6 (IL-6), prevented S. enterica colonization, and regulated the composition of gut microbiota in mice, thereby modulating the host's immune regulatory capacity. Therefore, E. faecalis exerts immunoregulatory and anti-pathogenic functions in carrion crows engaged in scavenging behavior, offering a representative case of how the gut microbiota contributes to the protection of hosts with specialized diets.


Asunto(s)
Cuervos , Animales , Ratones , Enterococcus faecalis , Ecosistema , ARN Ribosómico 16S , Conducta Alimentaria , Aves
6.
Mol Ther Nucleic Acids ; 35(1): 102149, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38435118

RESUMEN

Patients with pre-existing medical conditions are at a heightened risk of contracting severe acute respiratory syndrome (SARS), SARS-CoV-2, and influenza viruses, which can result in more severe disease progression and increased mortality rates. Nevertheless, the molecular mechanism behind this phenomenon remained largely unidentified. Here, we found that microRNA-19a/b (miR-19a/b), which is a constituent of the miR-17-92 cluster, exhibits reduced expression levels in patients with coronary heart disease in comparison to healthy individuals. The downregulation of miR-19a/b has been observed to facilitate the replication of influenza A virus (IAV). miR-19a/b can effectively inhibit IAV replication by targeting and reducing the expression of SOCS1, as observed in cell-based and coronary heart disease mouse models. This mechanism leads to the alleviation of the inhibitory effect of SOCS1 on the interferon (IFN)/JAK/STAT signaling pathway. The results indicate that the IAV employs a unique approach to inhibit the host's type I IFN-mediated antiviral immune responses by decreasing miR-19a/b. These findings provide additional insights into the underlying mechanisms of susceptibility to flu in patients with coronary heart disease. miR-19a/b can be considered as a preventative/therapy strategy for patients with coronary heart disease against influenza virus infection.

7.
Virology ; 593: 110031, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38401339

RESUMEN

Enteromorpha polysaccharides (EPPs) have been reported to have antiviral and anti-inflammatory properties. To explore the effect of EPPs on H5N1-infected mice, mice were pretreated with EPPs before being infected with the H5N1 influenza virus intranasally. H5N1 infection resulted in body-weight loss, pulmonary and intestinal damage, and an imbalance of gut microbiota in mice. As a result of the inclusion of EPPs, the body weight of mice recovered and pathological damage to the lung and intestine was reduced. EPPs also diminished inflammation by drastically lowering the expression of proinflammatory cytokines in lungs and intestines. H5N1 infection reduced bacterial diversity, and the abundance of pathogenic bacteria such as Desulfovibrio increased. However, the beneficial bacteria Alistipes rebounded in the groups which received EPPs before the infection. The modulation of the gut-lung axis may be related to the mechanism of EPPs in antiviral and anti-inflammatory responses. EPPs have shown potential in protecting the host from the influenza A virus infection.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Pulmón/patología , Citocinas/genética , Citocinas/metabolismo , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Polisacáridos/metabolismo , Antivirales/farmacología , Antivirales/metabolismo , Ratones Endogámicos BALB C
8.
Virol J ; 21(1): 33, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287375

RESUMEN

BACKGROUND: Influenza A virus (IAV) can cause severe and life-threatening illness in humans and animals. Therefore, it is important to search for host antiviral proteins and elucidate their antiviral mechanisms for the development of potential treatments. As a part of human innate immunity, host restriction factors can inhibit the replication of viruses, among which SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) can restrict the replication of viruses, such as HIV and enterovirus EV71. Viruses also developed countermeasures in the arms race with their hosts. There are few reports about whether SAMHD1 has a restriction effect on IAV. METHODS: To investigate the impact of IAV infection on SAMHD1 expression in A549 cells, we infected A549 cells with a varying multiplicity of infection (MOI) of IAV and collected cell samples at different time points for WB and RT-qPCR analysis to detect viral protein and SAMHD1 levels. The virus replication level in the cell culture supernatant was determined using TCID50 assay. Luciferase assay was used to reveal that H5N1 virus polymerase acidic protein (PA) affected the activity of the SAMHD1 promoter. To assess the antiviral capacity of SAMHD1, we generated a knockdown and overexpressed cell line for detecting H5N1 replication. RESULTS: In this study, we observed that SAMHD1 can restrict the intracellular replication of H5N1 and that the H5N1 viral protein PA can downregulate the expression of SAMHD1 by affecting SAMHD1 transcriptional promoter activity. We also found that SAMHD1's ability to restrict H5N1 is related to phosphorylation at 592-tyrosine. CONCLUSIONS: In conclusion, we found that SAMHD1 may affect the replication of IAVs as a host restriction factor and be countered by PA. Furthermore, SAMHD1 may be a potential target for developing antiviral drugs.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Animales , Humanos , Virus de la Influenza A/metabolismo , Factores de Transcripción/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Replicación Viral , Proteínas Virales/metabolismo , Antivirales/farmacología , Antivirales/metabolismo , Factor 3 Regulador del Interferón/metabolismo
9.
J Opt Soc Am A Opt Image Sci Vis ; 40(12): 2146-2155, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086023

RESUMEN

In this paper, an optical color single-channel asymmetric cryptosystem based on the non-negative matrix factorization (NMF) and a face biometric in cyan-magenta-yellow-black (CMYK) space is proposed. To the best of our knowledge, this is the first time that NMF has been introduced into optical color image encryption. In the proposed cryptosystem, the color image in CMYK space is first decomposed into four color channels: C, M, Y, and K. By performing NMF operations on the four color channels, the four basic and sparse matrices can be obtained, respectively, which achieves asymmetry and saves computational resources. The four basis matrices can be used as private keys, and the four coefficient matrices are synthesized by the inverse discrete wavelet transform for subsequent encryption. Finally, the synthesized image is encoded with double random phase encoding based on phase truncation (PT). Compared with the existing PT-based cryptosystems, our cryptosystem can improve security against a special attack. In addition, the chaotic random phase mask is generated by a face biometric, which is noncontact and unique. Numerical simulation results are shown to verify the feasibility and robustness of our cryptosystem. Further, the proposed cryptosystem can be extended to encrypt multiple images conveniently.

10.
J Opt Soc Am A Opt Image Sci Vis ; 40(10): 1969-1978, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855553

RESUMEN

The wrapped phase patterns of objects with varying materials exhibit uneven gray values. Phase unwrapping is a tricky problem from a single wrapped phase pattern in electronic speckle pattern interferometry (ESPI) due to the gray unevenness and noise. In this paper, we propose a convolutional neural network (CNN) model named UN-PUNet for phase unwrapping from a single wrapped phase pattern with uneven grayscale and noise. UN-PUNet leverages the benefits of a dual-branch encoder structure, a multi-scale feature fusion structure, a convolutional block attention module, and skip connections. Additionally, we have created an abundant dataset for phase unwrapping with varying degrees of unevenness, fringe density, and noise levels. We also propose a mixed loss function MS_SSIM + L2. Employing the proposed dataset and loss function, we can successfully train the UN-PUNet, ultimately realizing effective and robust phase unwrapping from a single uneven and noisy wrapped phase pattern. We evaluate the performance of our method on both simulated and experimental ESPI wrapped phase patterns, comparing it with DLPU, VUR-Net, and PU-M-Net. The unwrapping performance is assessed quantitatively and qualitatively. Furthermore, we conduct ablation experiments to evaluate the impact of different loss functions and the attention module utilized in our method. The results demonstrate that our proposed method outperforms the compared methods, eliminating the need for pre-processing, post-processing procedures, and parameter fine-tuning. Moreover, our method effectively solves the phase unwrapping problem while preserving the structure and shape, eliminating speckle noise, and addressing uneven grayscale.

11.
Metabolites ; 13(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37623901

RESUMEN

Luria-Bertani broth (LB) culture medium is a commonly used bacterial culture medium in the laboratory. The nutrient composition, concentration, and culture conditions of LB medium can influence the growth of microbial strains. The purpose of this article is to demonstrate the impact of LB liquid culture medium on microbial growth under different sterilization conditions. In this study, LB medium with four different treatments was used, as follows: A, LB medium without treatments; B, LB medium with filtration; C, LB medium with autoclaving; and D, LB medium with autoclaving and cultured for 12 h. Subsequently, the protein levels and antioxidant capacity of the medium with different treatments were measured, and the effects of the different LB medium treatments on the growth of microorganisms and metabolites were determined via 16s rRNA gene sequencing and metabolomics analysis, respectively. Firmicutes and Lactobacillus were the dominant microorganisms, which were enriched in fermentation and chemoheterotrophy. The protein levels and antioxidant capacity of the LB medium with different treatments were different, and with the increasing concentration of medium, the protein levels were gradually increased, while the antioxidant capacity was decreased firstly and then increased. The growth trend of Bacillus subtilis, Bacillus paralicheniformis, Micrococcus luteus, and Alternaria alternata in the medium with different treatments was similar. Additionally, 220 and 114 differential metabolites were found between B and C medium, and between C and D medium, which were significantly enriched in the "Hedgehog signaling pathway", "biosynthesis of plant secondary metabolites", "ABC transporters", "arginine and proline metabolism", and "linoleic acid metabolism". LB medium may be a good energy source for Lactobacillus growth with unsterilized medium, and LB medium filtered with a 0.22 µm filter membrane may be used for bacterial culture better than culture medium after high-pressure sterilization. LB medium still has the ability for antioxidation and to keep bacteria growth whether or not autoclaved, indicating that there are some substances that can resist a high temperature and pressure and still maintain their functions.

12.
Pathogens ; 12(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37623968

RESUMEN

Trichomonas gallinae (T. gallinae) is an infectious parasite that is prevalent worldwide in poultry and can cause death in both poultry and wild birds. Although studies have shown that T. gallinae damages host cells through direct contact, the mechanism is still unclear. In this study, we found that T. gallinae can kill host cells by ingesting fragments of the host cells, that is, by trogocytosis. Moreover, we found that the PI3K inhibitor wortmannin and the cysteine protease inhibitor E-64D prevented T. gallinae from destroying host cells. To the best of our knowledge, our study has demonstrated for the first time that T. gallinae uses trogocytosis to kill host cells. Understanding this mechanism is crucial for the prevention and control of avian trichomoniasis and will contribute to the development of vaccines and drugs for the prevention and control of avian trichomoniasis.

13.
Nutrients ; 15(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37571299

RESUMEN

The impact of lactoferrin, an antimicrobial peptide (AMP) with iron-binding properties, on the intestinal barrier and microflora of mice infected with highly pathogenic avian influenza A (H5N1) virus remains unclear. To investigate the effects of lactoferrin on the histopathology and intestinal microecological environment, we conducted a study using H5N1-infected mice. H5N1 infection resulted in pulmonary and intestinal damage, as well as an imbalance in gut microbiota, significantly increasing the abundance of pathogenic bacteria such as Helicobacter pylori and Campylobacter. The consumption of lactoferrin in the diet alleviated lung injury and restored the downregulation of the INAVA gene and intestinal dysfunction caused by H5N1 infection. Lactoferrin not only reduced lung and intestinal injury, but also alleviated inflammation and reversed the changes in intestinal microflora composition while increasing the abundance of beneficial bacteria. Moreover, lactoferrin rebalanced the gut microbiota and partially restored intestinal homeostasis. This study demonstrated that lactoferrin exerts its effects on the intestinal tract, leading to improvements in gut microbiota and restoration of the integrity of both the intestinal wall and lung tissue. These findings support the notion that lactoferrin may be a promising candidate for systemic treatment of influenza by locally acting on the intestine and microbiota.


Asunto(s)
Microbioma Gastrointestinal , Subtipo H5N1 del Virus de la Influenza A , Enfermedades Intestinales , Animales , Ratones , Lactoferrina/farmacología , Subtipo H5N1 del Virus de la Influenza A/fisiología , Inflamación/tratamiento farmacológico , Inflamación/patología , Intestinos/microbiología , Bacterias/genética , Enfermedades Intestinales/patología
14.
Artículo en Inglés | MEDLINE | ID: mdl-37562241

RESUMEN

Trichomonas gallinae is a protozoan parasite that is the causative agent of trichomoniasis, and infects captive and wild bird species throughout the world. Although metronidazole has been the drug of choice against trichomoniasis for decades, most Trichomonas gallinae strains have developed resistance. Therefore, drugs with new modes of action or targets are urgently needed. Here, we report the development and application of a cell-based CCK-8 method for the high-throughput screening and identification of new inhibitors of Trichomonas gallinae as a beginning point for the development of new treatments for trichomoniasis. We performed the high-throughput screening of 173 anti-parasitic compounds, and found 16 compounds that were potentially effective against Trichomonas gallinae. By measuring the median inhibitory concentration (IC50) and median cytotoxic concentration (CC50), we identified 3 potentially safe and effective compounds against Trichomonas gallinae: anisomycin, fumagillin, and MG132. In conclusion, this research successfully established a high-throughput screening method for compounds and identified 3 new safe and effective compounds against Trichomonas gallinae, providing a new treatment scheme for trichomoniasis.


Asunto(s)
Enfermedades de las Aves , Tricomoniasis , Trichomonas , Animales , Ensayos Analíticos de Alto Rendimiento , Enfermedades de las Aves/tratamiento farmacológico , Enfermedades de las Aves/parasitología , Tricomoniasis/tratamiento farmacológico , Tricomoniasis/veterinaria , Tricomoniasis/parasitología , Metronidazol/uso terapéutico
15.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513278

RESUMEN

The pollution of industrial wastewater has become a global issue in terms of economic development and ecological protection. Pseudomonas oleovorans has been studied as a bacterium involved in the treatment of petroleum pollutants. Our study aimed to investigate the physicochemical properties and drug resistance of Pseudomonas oleovorans isolated from industrial wastewater with a high concentration of sulfate compounds. Firstly, Pseudomonas oleovorans was isolated and then identified using matrix-assisted flight mass spectrometry and 16S rDNA sequencing. Then, biochemical and antibiotic resistance analyses were performed on the Pseudomonas oleovorans, and a microbial high-throughput growth detector was used to assess the growth of the strain. Finally, PCR and proteomics analyses were conducted to determine drug-resistance-related genes/proteins. Based on the results of the spectrum diagram and sequencing, the isolated bacteria were identified as Pseudomonas oleovorans and were positive to reactions of ADH, MTE, CIT, MLT, ONPG, and ACE. Pseudomonas oleovorans was sensitive to most of the tested antibiotics, and its resistance to SXT and CHL and MIN and TIM was intermediate. The growth experiment showed that Pseudomonas oleovorans had a good growth rate in nutrient broth. Additionally, gyrB was the resistance gene, and mdtA2, mdtA3, mdtB2, mdaB, and emrK1 were the proteins that were closely associated with the drug resistance of Pseudomonas oleovorans. Our results show the biochemical properties of Pseudomonas oleovorans from industrial wastewater with a high concentration of sulfate compounds and provide a new perspective for Pseudomonas oleovorans to participate in biological removal of chemical pollutants in industrial wastewater.


Asunto(s)
Contaminantes Ambientales , Pseudomonas oleovorans , Pseudomonas oleovorans/genética , Pseudomonas/metabolismo , Aguas Residuales , ADN Ribosómico/metabolismo , Contaminantes Ambientales/metabolismo
16.
Integr Zool ; 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403417

RESUMEN

Toll-like receptors (TLRs), the key sensor molecules in vertebrates, trigger the innate immunity and prime the adaptive immune system. The TLR family of rodents, the largest order of mammals, typically contains 13 TLR genes. However, a clear picture of the evolution of the rodent TLR family has not yet emerged and the TLR evolutionary patterns are unclear in rodent clades. Here, we analyzed the natural variation and the evolutionary processes acting on the TLR family in rodents at both the interspecific and population levels. Our results showed that rodent TLRs were dominated by purifying selection, but a series of positively selected sites (PSSs) primarily located in the ligand-binding domain was also identified. The numbers of PSSs differed among TLRs, and nonviral-sensing TLRs had more PSSs than those in viral-sensing TLRs. Gene-conversion events were found between TLR1 and TLR6 in most rodent species. Population genetic analyses showed that TLR2, TLR8, and TLR12 were under positive selection in Rattus norvegicus and R. tanezumi, whereas positive selection also acted on TLR5 and TLR9 in the former species, as well as TLR1 and TLR7 in the latter species. Moreover, we found that the proportion of polymorphisms with potentially functional change was much lower in viral-sensing TLRs than in nonviral-sensing TLRs in both of these rat species. Our findings revealed the first thorough insight into the evolution of the rodent TLR genetic variability and provided important novel insights into the evolutionary history of TLRs over long and short timescales.

17.
Virus Genes ; 59(4): 604-612, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37266848

RESUMEN

H11N9 viruses in wild birds might have provided the NA gene of human H7N9 virus in early 2013 in China, which evolved with highly pathogenic strains in 2017 and caused severe fatalities. To investigate the prevalence and evolution of the H11N9 influenza viruses, 16,781 samples were collected and analyzed during 2016-2020. As a result, a novel strain of influenza A (H11N9) virus with several characteristics that increase virulence was isolated. This strain had reduced pathogenicity in chicken and mice and was able to replicate in mice without prior adaptation. Phylogenetic analyses showed that it was a sextuple-reassortant virus of H11N9, H3N8, H3N6, H7N9, H9N2, and H6N8 viruses present in China, similar to the H11N9 strains in Japan and Korea during the same period. This was the H11N9 strain isolated from China most recently, which add a record to viruses in wild birds. This study identified a new H11N9 reassortant in a wild bird with key mutation contributing to virulence. Therefore, comprehensive surveillance and enhanced biosecurity precautions are particularly important for the prediction and prevention of potential pandemics resulting from reassortant viruses with continuous evolution and expanding geographic distributions.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Ratones , Humanos , Patos , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Filogenia , Animales Salvajes , Pollos , Virus Reordenados/genética
18.
Integr Zool ; 18(6): 963-980, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37202360

RESUMEN

Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.


Asunto(s)
Animales Salvajes , Ecosistema , Humanos , Animales , Biodiversidad , Extinción Biológica , Brotes de Enfermedades
19.
Animals (Basel) ; 13(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37106853

RESUMEN

The abundance and prevalence of parasitic infection often vary in different host sexes, and this phenomenon has been named sex-biased parasitism. Brandt's voles are the dominant rodent species in typical steppe habitat and are widely distributed in Inner Mongolia, China, but the prevalence of parasites in Brandt's voles are poorly reported. In this study, we investigated the prevalence of six intestinal parasites in Brandt's voles in May, June, July, and August 2022 around the Xilingol Grassland in Inner Mongolia, China. The results showed that Syphacia obvelata, Aspiculuris tetraptera, and Trichostrongylidae family were the dominant intestinal parasites in Brandt's voles that we captured in this study, and the infection rates of the three parasites were significantly higher in males than females, which showed obvious male-biased parasitism. Season and human activities such as grazing had no significant effect on the infection rates for different parasites, while the parasite reproduction level was higher when the ambient temperature was around 18 °C. Sexual size dimorphism was ubiquitous in Brandt's voles, and it was mainly manifested by the differences in body weight and length between males and females. Simple linear regression analysis showed a significant positive correlation between bodyweight and parasite infection rates, so the sex-biased parasitism in Brandt's voles could be explained by the body size hypothesis, as a larger body could provide more ecological niches for parasitic infection.

20.
Front Microbiol ; 14: 1136845, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910168

RESUMEN

Gut microbiota not only helps the hosts to perform many key physiological functions such as food digestion, energy harvesting and immune regulation, but also influences host ecology and facilitates adaptation of the host to extreme environments. Plateau zokors epitomize successful physiological adaptation to their living environment in the face of the harsh environment characterized by low temperature, low pressure and hypoxia in the Tibetan plateau region and high concentrations of CO2 in their burrows. Therefore, here we used a metagenomic sequencing approach to explore how gut microbiota contributed to the adaptive evolution of the plateau zokor on the Qinghai-Tibet Plateau. Our metagenomic results show that the gut microbiota of plateau zokors on the Tibetan plateau is not only enriched in a large number of species related to energy metabolism and production of short-chain fatty acids (SCFAs), but also significantly enriched the KO terms that involve carbohydrate uptake pathways, which well address energy uptake in plateau zokors while also reducing inflammatory responses due to low pressure, hypoxia and high CO2 concentrations. There was also a significant enrichment of tripeptidyl-peptidase II (TPPII) associated with antigen processing, apoptosis, DNA damage repair and cell division, which may facilitate the immune response and tissue damage repair in plateau zokors under extreme conditions. These results suggest that these gut microbiota and their metabolites together contribute to the physiological adaptation of plateau zokors, providing new insights into the contribution of the microbiome to the evolution of mammalian adaptation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA