Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2309009, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100243

RESUMEN

Using seeds to control the crystallization of perovskite film is an effective strategy for achieving high-efficiency perovskite solar cells (PSCs). Owing to their excellent environmental stability brought by their long alkyl chain, n-butylammonium (BA) cations are widely used for fabricating efficient and stable PSCs. However, BA-based 2D perovskite is seldom been investigated as a seed. Here, BA2 PbI4 is employed to regulate the crystallization of PbI2 , acting as nucleation centers. As a result, porous PbI2 film with high crystallinity is obtained, which allows the realization of perovskite film with preferential crystal orientations of (001) and large grain size of over 2 µm. The corresponding PSC achieves a high power conversion efficiency (PCE) of 24.30% and exhibits satisfactory stability, retaining 91.70% of the initial PCE after 300 h of thermal aging at 85°C.

2.
Angew Chem Int Ed Engl ; 62(41): e202311865, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37615050

RESUMEN

Passivating the interfaces between the perovskite and charge transport layers is crucial for enhancing the power conversion efficiency (PCE) and stability in perovskite solar cells (PSCs). Here we report a dual-interface engineering approach to improving the performance of FA0.85 MA0.15 Pb(I0.95 Br0.05 )3 -based PSCs by incorporating Ti3 C2 Clx Nano-MXene and o-TB-GDY nanographdiyne (NanoGDY) into the electron transport layer (ETL)/perovskite and perovskite/ hole transport layer (HTL) interfaces, respectively. The dual-interface passivation simultaneously suppresses non-radiative recombination and promotes carrier extraction by forming the Pb-Cl chemical bond and strong coordination of π-electron conjugation with undercoordinated Pb defects. The resulting perovskite film has an ultralong carrier lifetime exceeding 10 µs and an enlarged crystal size exceeding 2.5 µm. A maximum PCE of 24.86 % is realized, with an open-circuit voltage of 1.20 V. Unencapsulated cells retain 92 % of their initial efficiency after 1464 hours in ambient air and 80 % after 1002 hours of thermal stability test at 85 °C.

3.
J Pain Res ; 16: 1321-1332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101519

RESUMEN

Purpose: Globally, the incidence of herpes zoster (HZ) is increasing, and the resulting zoster-associated pain (ZAP) severely affects the quality of life of patients. Therefore, active treatment of ZAP and prevention of postherpetic neuralgia (PHN) are very important for patients in the early stage of the disease. This retrospective observational study aimed to evaluate the effect of CT-guided pulsed radiofrequency (PRF) combined with ozone injection on zoster-associated pain. Patients and Methods: From 2018 to 2020, 84 patients with AHN (n=28), SHN (n=32), or PHN (n=24) underwent PRF combined with ozone injection treatment after pharmacologic and conservative therapies failed. The visual analogue scale (VAS), the Pittsburgh Sleep Quality Index (PSQI), and pregabalin consumption were recorded at baseline, post-PRF, and at 1, 3, 6, and 12 months after treatment. The number of remediations performed and adverse reactions were recorded, and treatment inefficiency was calculated using a VAS score greater than 3 as the criterion. Results: The pooled results demonstrated statistically significant decreases in VAS scores, PSQI scores and consumption of pregabalin post-PRF and at 1, 3, 6, and 12 months follow-up (P<0.05). Compared with the PHN group, both the AHN and SHN groups showed clinical and statistical improvement in VAS scores and PSQI scores and in consumption of pregabalin (P< 0.05). At 1 year after the operation, the PHN group had a significantly greater number of remediation events and greater treatment inefficiency than the other two groups. No serious adverse events were observed during the procedure or during the follow-up period. Conclusion: CT-guided PRF combined with ozone injection is safe and effective for individuals with ZAP, and its short-term and long-term effects are significant. In a sense, early PRF combined with ozone injection is more effective.

4.
Adv Mater ; 35(14): e2210374, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36631722

RESUMEN

Ferroelectric materials are considered as promising photocatalysts due to their efficient charge separation via a polarization-induced built-in electric field. However, the polydomain structures hinder spatial charge separation and transfer due to the cancellation of polarization vectors in the domains. In this work, taking BiFeO3 (BFO) as a prototype, single-domain BFO nanosheets with visible-light absorption are prepared, as evident by piezoresponse force microscopy (PFM), spatially resolved surface photovoltage spectroscopy (SRSPS), and photodeposition experiments. The single-domain BFO nanosheets show nine times activity in photocatalytic water oxidation reaction under visible-light irradiation, compared with that of the polydomain BFO particles. With the asymmetric driving force for charge separation in a single domain, selective deposition of cocatalysts further enhances the photocatalytic activity of single-domain ferroelectric BFO nanosheets. These results demonstrate the role of the single-domain structure in constructing the driving force of charge separation in ferroelectric photocatalysts. The fabrication of single-domain structures in ferroelectric photocatalysts to achieve enhanced photocatalytic activity offers a path to efficiently utilize the photogenerated charges in solar energy conversion.

5.
Nat Commun ; 13(1): 4245, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869136

RESUMEN

Ferroelectrics are considered excellent photocatalytic candidates for solar fuel production because of the unidirectional charge separation and above-gap photovoltage. Nevertheless, the performance of ferroelectric photocatalysts is often moderate. A few studies showed that these types of photocatalysts could achieve overall water splitting. This paper proposes an approach to fabricating interfacial charge-collecting nanostructures on positive and negative domains of ferroelectric, enabling water splitting in ferroelectric photocatalysts. The present study observes efficient accumulations of photogenerated electrons and holes within their thermalization length (~50 nm) around Au nanoparticles located in the positive and negative domains of a BaTiO3 single crystal. Photocatalytic overall water splitting is observed on a ferroelectric BaTiO3 single crystal after assembling oxidation and reduction cocatalysts on the positively and negatively charged Au nanoparticles, respectively. The fabrication of bipolar charge-collecting structures on ferroelectrics to achieve overall water splitting offers a way to utilize the energetic photogenerated charges in solar energy conversion.

6.
J Recept Signal Transduct Res ; 42(2): 117-124, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33349105

RESUMEN

Cadmium (Cd) has a direct toxic effect on bones. Statins such as simvastatin have protective effects on various diseases, including on tissue injury. The current study revealed the efficacy of simvastatin on Cd-induced preosteoblast injury. Preosteoblast MC3T3-E1 cells were incubated with various doses of CdCl2 for 12 h, 24 h and 48 h, and then the cell cytotoxicity was assessed using MTT assay and flow cytometry, respectively. The expression level of Nox4 was assessed by Western blot and qRT-PCR. The morphological appearance of MC3T3-E1 cells was observed under a microscope. Cells exposed to CdCl2 (5 µM) were further treated by simvastatin at various doses, subsequently cell viability, apoptosis and the expression of Nox4 were measured. Furthermore, to confirm the protective effects of simvastatin on Cd-induced pre-osteoblast injury, functional rescue assays were performed after corresponding cell treatment by simvastatin (10-8 M), CdCl2 (5 µM), and overexpression of Nox4. Expressions of cell apoptosis-related markers were measured by Western blot and qRT-PCR. The results revealed that CdCl2 caused MC3T3-E1 cell injury because the cell viability was decreased and the apoptosis was increased. Nox4 expression was up-regulated with the increase of CdCl2 concentrations. Simvastatin increased the cell viability, relieved the cell apoptosis and Nox4 expression previously increased by CdCl2. The effects of CdCl2 on MC3T3-E1 cells and Nox4 expression could be attenuated by simvastatin, and promoted by Nox4 overexpression. The current study found that simvastatin protects Cd-induced preosteoblast injury via Nox4, thus, it can be used as a potential drug for treating cadmium-induced bone injury.


Asunto(s)
Cadmio , Simvastatina , Apoptosis , Cadmio/metabolismo , Cadmio/farmacología , Línea Celular , Osteoblastos , Simvastatina/metabolismo , Simvastatina/farmacología
7.
BMC Cardiovasc Disord ; 21(1): 96, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593294

RESUMEN

BACKGROUND: Sevoflurane postconditioning (SevP) effectively relieves myocardial ischemia/reperfusion (I/R) injury but performs poorly in the diabetic myocardium. Previous studies have revealed the important role of increased oxidative stress in diabetic tissues. Notably, mitochondrial fission mediated by dynamin-related protein 1 (Drp1) is an upstream pathway of reactive oxygen production. Whether the ineffectiveness of SevP in the diabetic myocardium is related to Drp1-dependent mitochondrial fission remains unknown. This study aimed to explore the important role of Drp1 in the diabetic myocardium and investigate whether Drp1 inhibition could restore the cardioprotective effect of SevP. METHODS: In the first part of the study, adult male Sprague-Dawley rats were divided into 6 groups. Rats in the diabetic groups were fed with high-fat and high-sugar diets for 8 weeks and injected intraperitoneally with streptozotocin (35 mg/kg). Myocardial I/R was induced by 30 min of occlusion of the left anterior descending branch of the coronary artery followed by 120 min of reperfusion. SevP was applied by continuous inhalation of 2.5 % sevoflurane 1 min before reperfusion, which lasted for 10 min. In the second part of the study, we applied mdivi-1 to investigate whether Drp1 inhibition could restore the cardioprotective effect of SevP in the diabetic myocardium. The myocardial infarct size, mitochondrial ultrastructure, apoptosis index, SOD activity, MDA content, and Drp1 expression were detected. RESULTS: TTC staining and TUNEL results showed that the myocardial infarct size and apoptosis index were increased in the diabetic myocardium. However, SevP significantly alleviated myocardial I/R injury in the normal myocardium but not in the diabetic myocardium. Additionally, we found an elevation in Drp1 expression, accompanied by more severe fission-induced structural damage and oxidative stress in the diabetic myocardium. Interestingly, we discovered that the beneficial effect of SevP was restored by mdivi-1, which significantly suppressed mitochondrial fission and oxidative stress. CONCLUSIONS: Our study demonstrates the crucial role of mitochondrial fission dependent on Drp1 in the diabetic myocardium subjected to I/R, and strongly indicates that Drp1 inhibition may restore the cardioprotective effect of SevP in diabetic rats.


Asunto(s)
Anestésicos por Inhalación/farmacología , Diabetes Mellitus Experimental/metabolismo , Dinaminas/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Sevoflurano/farmacología , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Dinámicas Mitocondriales/efectos de los fármacos , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley
8.
Front Microbiol ; 11: 346, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194535

RESUMEN

In order to improve the thermostability of lipases derived from Rhizopus chinensis, we identified lipase (Lipr27RCL) mutagenesis sites that were associated with enhanced flexibility based upon B-factor analysis and multiple sequence alignment. We found that two mutated isoforms (Lipr27RCL-K64N and Lipr27RCL-K68T) exhibited enhanced thermostability and improved residual activity, with respective thermal activity retention values of 37.88% and 48.20% following a 2 h treatment at 50°C relative to wild type Lipr27RCL. In addition, these Lipr27RCL-K64N and Lipr27RCL-K68T isoforms exhibited 2.4- and 3.0-fold increases in enzymatic half-life following a 90 min incubation at 60°C. Together these results indicate that novel mutant lipases with enhanced thermostability useful for industrial applications can be predicted based upon B-factor analysis and constructed via site-directed mutagenesis.

9.
J Mater Sci ; 52(11): 6754-6766, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28356603

RESUMEN

A novel dot-like Cu2O-loaded TiO2/reduced graphene oxide (rGO) nanoheterojunction was synthesized via UV light reduction for the first time. Cu2O with size of ca. 5 nm was deposited on rGO sheet and TiO2 nanosheets. The products were characterized by infrared spectroscopy, Raman spectrum, UV-Vis diffuse reflectance spectra, XPS techniques, photoluminescence spectra. The results demonstrated that Cu2O and rGO enhanced the absorption for solar light, separation efficiency of electron-hole pairs, charge shuttle and transfer, and eventually improved photoelectrochemical and photocatalytic performance for contaminants degradation. The reaction time and anion precursor could affect the final copper-containing phase. As extending UV irradiation time, Cu2+ was be first reduced to Cu2O and then transformed to metal Cu. In comparison with CH3COO- (copper acetate), NO3- (copper nitrate) and Cl- (copper chloride), SO42- (copper sulfate) was the optimum for synthesizing pure Cu2O phase.

10.
J Nanosci Nanotechnol ; 17(2): 1350-355, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29683630

RESUMEN

α-Fe2O3 and graphene composite (α-Fe2O3/G) was prepared by a facile one-step hydrothermal method with an aim of improving photocatalytic efficiency of the α-Fe2O3. Composition of reduced graphene oxide and α-Fe2O3 were simultaneously achieved during the hydrothermal reaction. The structures and morphologies of the composites were characterized by X-ray diffraction and transmission electron microscopy. The photoelectrochemical properties were investigated by the Mott-Schottky, electrochemical impedance spectra and UV-vis diffusion spectra measurements. The photodegradation results showed that α-Fe2O3/G composites had a much better photocatalytic performance than pure α-Fe2O3 due to extended light absorption range and lower electron­hole recombination rate. It provided a new insight into the effect of graphene on photocatalytic activity for high efficient catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...