Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(3): 617-634, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37874929

RESUMEN

RAD5B belongs to the Rad5/16-like group of the SNF2 family, which often functions in chromatin remodelling. However, whether RAD5B is involved in chromatin remodelling, histone modification, and drought stress tolerance is largely unclear. We identified a drought-inducible chromatin remodeler, MdRAD5B, which positively regulates apple drought tolerance. Transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analysis showed that MdRAD5B affects the expression of 466 drought-responsive genes through its chromatin remodelling function in response to drought stress. In addition, MdRAD5B interacts with and degrades MdLHP1, a crucial regulator of histone H3 trimethylation at K27 (H3K27me3), through the ubiquitin-independent 20S proteasome. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that MdRAD5B modulates the H3K27me3 deposition of 615 genes in response to drought stress. Genetic interaction analysis showed that MdRAD5B mediates the H3K27me3 deposition of drought-responsive genes through MdLHP1, which causes their expression changes under drought stress. Our results unravelled a dual function of MdRAD5B in gene expression modulation in apple in response to drought, that is, via the regulation of chromatin remodelling and H3K27me3.


Asunto(s)
Cromatina , Malus , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Malus/genética , Malus/metabolismo , Resistencia a la Sequía , Procesamiento Proteico-Postraduccional
2.
Plant Physiol ; 193(4): 2513-2537, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37648253

RESUMEN

Grafting can facilitate better scion performance and is widely used in plants. Numerous studies have studied the involvement of mRNAs, small RNAs, and epigenetic regulations in the grafting process. However, it remains unclear whether the mRNA N6-methyladenosine (m6A) modification participates in the apple (Malus x domestica Borkh.) grafting process. Here, we decoded the landscape of m6A modification profiles in 'Golden delicious' (a cultivar, Gd) and Malus prunifolia 'Fupingqiuzi' (a unique rootstock with resistance to environmental stresses, Mp), as well as their heterografted and self-grafted plants. Interestingly, global hypermethylation of m6A occurred in both heterografted scion and rootstock compared with their self-grafting controls. Gene Ontology (GO) term enrichment analysis showed that grafting-induced differentially m6A-modified genes were mainly involved in RNA processing, epigenetic regulation, stress response, and development. Differentially m6A-modified genes harboring expression alterations were mainly involved in various stress responses and fatty acid metabolism. Furthermore, grafting-induced mobile mRNAs with m6A and gene expression alterations mainly participated in ABA synthesis and transport (e.g. carotenoid cleavage dioxygenase 1 [CCD1] and ATP-binding cassette G22 [ABCG22]) and abiotic and biotic stress responses, which might contribute to the better performance of heterografted plants. Additionally, the DNA methylome analysis also demonstrated the DNA methylation alterations during grafting. Downregulated expression of m6A methyltransferase gene MdMTA (ortholog of METTL3) in apples induced the global m6A hypomethylation and distinctly activated the expression level of DNA demethylase gene MdROS1 (REPRESSOR OF SILENCING 1) showing the possible association between m6A and 5mC methylation in apples. Our results reveal the m6A modification profiles in the apple grafting process and enhance our understanding of the m6A regulatory mechanism in plant biological processes.


Asunto(s)
Metilación de ADN , Malus , Metilación de ADN/genética , Malus/genética , Epigénesis Genética , Trasplante Heterólogo , Adenosina/genética
3.
Plants (Basel) ; 12(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37571003

RESUMEN

Fruit ripening is governed by a complex regulatory network, and ethylene plays an important role in this process. MdKING1 is a γ subunit of SNF1-related protein kinases (SnRKs), but the function was unclear. Here, we characterized the role of MdKING1 during fruit ripening, which can promote fruit ripening through the ethylene pathway. Our findings reveal that MdKING1 has higher expression in early-ripening cultivars than late-ripening during the early stage of apple fruit development, and its transcription level significantly increased during apple fruit ripening. Overexpression of MdKING1 (MdKING1 OE) in tomatoes could promote early ripening of fruits, with the increase in ethylene content and the loss of fruit firmness. Ethylene inhibitor treatment could delay the fruit ripening of both MdKING1 OE and WT fruits. However, MdKING1 OE fruits turned fruit ripe faster, with an increase in carotenoid content compared with WT. In addition, the expression of genes involved in ethylene biosynthesis (SlACO1, SlACS2, and SlACS4), carotenoid biosynthesis (SlPSY1 and SlGgpps2a), and fruit firmness regulation (SlPG2a, SlPL, and SlCEL2) was also increased in the fruits of MdKING1 OE plants. In conclusion, our results suggest that MdKING1 plays a key role in promoting tomato fruit ripening, thus providing a theoretical basis for apple fruit quality improvement by genetic engineering in the future.

4.
Hortic Res ; 10(6): uhad099, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37427035

RESUMEN

The dwarfing rootstocks-mediated high-density apple orchard is becoming the main practice management. Currently, dwarfing rootstocks are widely used worldwide, but their shallow root system and drought sensitivity necessitate high irrigation requirements. Here, the root transcriptome and metabolome of dwarfing (M9-T337, a drought-sensitive rootstock) and vigorous rootstocks (Malus sieversii, a drought-tolerant species, is commonly used as a rootstock) showed that a coumarin derivative, 4-Methylumbelliferon (4-MU), was found to accumulate significantly in the roots of vigorous rootstock under drought condition. When exogenous 4-MU was applied to the roots of dwarfing rootstock under drought treatment, the plants displayed increased root biomass, higher root-to-shoot ratio, greater photosynthesis, and elevated water use efficiency. In addition, diversity and structure analysis of the rhizosphere soil microbial community demonstrated that 4-MU treatment increased the relative abundance of putatively beneficial bacteria and fungi. Of these, Pseudomonas, Bacillus, Streptomyces, and Chryseolinea bacterial strains and Acremonium, Trichoderma, and Phoma fungal strains known for root growth, or systemic resistance against drought stress, were significantly accumulated in the roots of dwarfing rootstock after 4-MU treatment under drought stress condition. Taken together, we identified a promising compound-4-MU, as a useful tool, to strengthen the drought tolerance of apple dwarfing rootstock.

5.
Plant Physiol ; 192(3): 2143-2160, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36970784

RESUMEN

Apple (Malus domestica) trees often experience various abiotic and biotic stresses. However, due to the long juvenile period of apple and its high degree of genetic heterozygosity, only limited progress has been made in developing cold-hardy and disease-resistant cultivars through traditional approaches. Numerous studies reveal that biotechnology is a feasible approach to improve stress tolerance in woody perennial plants. HYPONASTIC LEAVES1 (HYL1), a double-stranded RNA-binding protein, is a key regulator involved in apple drought stress response. However, whether HYL1 participates in apple cold response and pathogen resistance remains unknown. In this study, we revealed that MdHYL1 plays a positive role in cold tolerance and pathogen resistance in apple. MdHYL1 acted upstream to positively regulate freezing tolerance and Alternaria alternata resistance by positively modulating transcripts of MdMYB88 and MdMYB124 in response to cold stress or A. alternata infection. In addition, MdHYL1 regulated the biogenesis of several miRNAs responsive to cold and A. alternata infection in apple. Furthermore, we identified Mdm-miRNA156 (Mdm-miR156) as a negative regulator of cold tolerance and Mdm-miRNA172 (Mdm-miR172) as a positive regulator of cold tolerance, and that Mdm-miRNA160 (Mdm-miR160) decreased plant resistance to infection by A. alternata. In summary, we highlight the molecular role of MdHYL1 regarding cold tolerance and A. alternata infection resistance, thereby providing candidate genes for breeding apple with freezing tolerance and A. alternata resistance using biotechnology.


Asunto(s)
Malus , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malus/metabolismo , Resistencia a la Enfermedad/genética , Fitomejoramiento , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas
6.
J Plant Physiol ; 280: 153890, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36571915

RESUMEN

GABA (γ-aminobutyric acid) plays a multifaceted role in plant growth, fruit quality, and tolerance to abiotic stresses. However, its physiological roles and mechanisms in the fruit quality and response to long-term drought stress in apple remain unelucidated. To investigate the effect of GABA on apple fruit quality and drought tolerance, we sprayed exogenous GABA on apple cultivar "Cripps Pink" and irrigated rootstock M.9-T337 with GABA, respectively. Results showed that exogenous GABA could effectively improve the fruit quality of "Cripps Pink", including increased sugar-to-acid ratio, flesh firmness, pericarp malleability, and GABA content, as well as reduced fruit acidity. In addition, pretreatment of M.9-T337 plants with GABA improved their tolerance to both long- and short-term drought stress. Specifically, 1 mM exogenous GABA increased the net photosynthetic rate, relative leaf water content, root-to-shoot ratio, and water use efficiency under long-term drought stress, and delayed the increased of the relative electrolyte leakage under short-term drought stress. RNA-seq analysis identified 1271 differentially expressed genes (DEGs) between nontreated and GABA-pretreated plants under short-term drought stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these DEGs revealed that GABA may enhance plant drought resistance by upregulating the expression of genes related to "Biosynthesis of secondary metabolites", "MAPK signaling pathway", "Glutathione metabolism", and "Carbon fixation in photosynthetic organisms". In conclusion, these results revealed that exogenous GABA can improve fruit quality and enhance drought tolerance in apple.


Asunto(s)
Malus , Malus/metabolismo , Frutas/metabolismo , Resistencia a la Sequía , Ácido gamma-Aminobutírico/farmacología , Sequías , Agua/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
7.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232500

RESUMEN

Drought resistance in plants is influenced by multiple signaling pathways that involve various transcription factors, many target genes, and multiple types of epigenetic modifications. Studies on epigenetic modifications of drought focus on DNA methylation and histone modifications, with fewer on chromatin remodeling. Changes in chromatin accessibility can play an important role in abiotic stress in plants by affecting RNA polymerase binding and various regulatory factors. However, the changes in chromatin accessibility during drought in apples are not well understood. In this study, the landscape of chromatin accessibility associated with the gene expression of apple (GL3) under drought conditions was analyzed by Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) and RNA-seq. Differential analysis between drought treatment and control identified 23,466 peaks of upregulated chromatin accessibility and 2447 peaks of downregulated accessibility. The drought-induced chromatin accessibility changed genes were mainly enriched in metabolism, stimulus, and binding pathways. By combining results from differential analysis of RNA-seq and ATAC-seq, we identified 240 genes with higher chromatin accessibility and increased gene expression under drought conditions that may play important functions in the drought response process. Among them, a total of nine transcription factor genes were identified, including ATHB7, HAT5, and WRKY26. These transcription factor genes are differentially expressed with different chromatin accessibility motif binding loci that may participate in apple response to drought by regulating downstream genes. Our study provides a reference for chromatin accessibility under drought stress in apples and the results will facilitate subsequent studies on chromatin remodelers and transcription factors.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Malus , Cromatina/genética , ARN Polimerasas Dirigidas por ADN/genética , Sequías , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Malus/genética , Malus/metabolismo , RNA-Seq , Factores de Transcripción/genética , Transposasas/genética
8.
New Phytol ; 236(6): 2131-2150, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36161284

RESUMEN

Drought limits apple yield and fruit quality. However, the molecular mechanism of apple in response to drought is not well known. Here, we report a Cys2/His2 (C2H2)-type zinc-finger protein, MdZAT5, that positively regulates apple drought tolerance by regulating drought-responsive RNAs and microRNAs (miRNAs). DNA affinity purification and sequencing and yeast-one hybrid analysis identified the binding motifs of MdZAT5, T/ACACT/AC/A/G. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and electrophoretic mobility shift assays (EMSAs) showed that MdZAT5 directly binds to the promoters of the drought-responsive genes including MdRHA2a, MdLEA14, MdTPX1, and MdCAT3, and activates their expression under drought stress. MdZAT5 interacts with and directly targets HYPONASTIC LEAVES1 (MdHYL1). MdZAT5 may facilitate the interaction of MdHYL1 with pri-miRNAs or MdDCL1 by activating MdHYL1 expression, thereby regulating the biogenesis of drought-responsive miRNAs. Genetic dissection showed that MdHYL1 is essential for MdZAT5-mediated drought tolerance and miRNA biogenesis. In addition, ChIP-qPCR and EMSA revealed that MdZAT5 binds directly to the promoters of some MIR genes including Mdm-miR171i and Mdm-miR172c, and modulates their transcription. Taken together, our findings improve our understanding of the molecular mechanisms of drought response in apple and provide a candidate gene for the breeding of drought-tolerant cultivars.


Asunto(s)
Malus , MicroARNs , Sequías , Malus/genética , MicroARNs/genética , Regulación de la Expresión Génica de las Plantas , ARN Mensajero , Fitomejoramiento , Estrés Fisiológico/genética
9.
Plant Cell ; 34(10): 3983-4006, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897144

RESUMEN

Miniature inverted-repeat transposable elements (MITEs) are widely distributed in the plant genome and can be methylated. However, whether DNA methylation of MITEs is associated with induced allelic expression and drought tolerance is unclear. Here, we identified the drought-inducible MdRFNR1 (root-type ferredoxin-NADP+ oxidoreductase) gene in apple (Malus domestica). MdRFNR1 plays a positive role in drought tolerance by regulating the redox system, including increasing NADP+ accumulation and catalase and peroxidase activities and decreasing NADPH levels. Sequence analysis identified a MITE insertion (MITE-MdRF1) in the promoter of MdRFNR1-1 but not the MdRFNR1-2 allele. MdRFNR1-1 but not MdRFNR1-2 expression was significantly induced by drought stress, which was positively associated with the MITE-MdRF1 insertion and its DNA methylation. The methylated MITE-MdRF1 is recognized by the transcriptional anti-silencing factors MdSUVH1 and MdSUVH3, which recruit the DNAJ domain-containing proteins MdDNAJ1, MdDNAJ2, and MdDNAJ5, thereby activating MdRFNR1-1 expression under drought stress. Finally, we showed that MdSUVH1 and MdDNAJ1 are positive regulators of drought tolerance. These findings illustrate the molecular roles of methylated MITE-MdRF1 (which is recognized by the MdSUVH-MdDNAJ complex) in induced MdRFNR1-1 expression as well as the drought response of apple and shed light on the molecular mechanisms of natural variation in perennial trees.


Asunto(s)
Sequías , Malus , Alelos , Catalasa/genética , Elementos Transponibles de ADN/genética , Ferredoxinas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Malus/genética , Malus/metabolismo , Metilación , NADP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
New Phytol ; 234(4): 1294-1314, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35246985

RESUMEN

Although the N6 -methyladenosine (m6 A) modification is the most prevalent RNA modification in eukaryotes, the global m6 A modification landscape and its molecular regulatory mechanism in response to drought stress remain unclear. Transcriptome-wide m6 A methylome profiling revealed that m6 A is mainly enriched in the coding sequence and 3' untranslated region in response to drought stress in apple, by recognizing the plant-specific sequence motif UGUAH (H=A, U or C). We identified a catalytically active component of the m6 A methyltransferase complex, MdMTA. An in vitro methyl transfer assay, dot blot, LC-MS/MS and m6 A-sequencing (m6 A-seq) suggested that MdMTA is an m6 A writer and essential for m6 A mRNA modification. Further studies revealed that MdMTA is required for apple drought tolerance. m6 A-seq and RNA-seq analyses under drought conditions showed that MdMTA mediates m6 A modification and transcripts of mRNAs involved in oxidative stress and lignin deposition. Moreover, m6 A modification promotes mRNA stability and the translation efficiency of these genes in response to drought stress. Consistently, MdMTA enhances lignin deposition and scavenging of reactive oxygen species under drought conditions. Our results reveal the global involvement of m6 A modification in the drought response of perennial apple trees and illustrate its molecular mechanisms, thereby providing candidate genes for the breeding of stress-tolerant apple cultivars.


Asunto(s)
Sequías , Malus , Cromatografía Liquida , Regulación de la Expresión Génica de las Plantas , Lignina , Malus/genética , Estrés Oxidativo , Fitomejoramiento , Estabilidad del ARN , Estrés Fisiológico/genética , Espectrometría de Masas en Tándem , Transcriptoma/genética
12.
Plant Physiol ; 188(1): 540-559, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34618120

RESUMEN

Water deficit is one of the main challenges for apple (Malus × domestica) growth and productivity. Breeding drought-tolerant cultivars depends on a thorough understanding of the drought responses of apple trees. Here, we identified the zinc-finger protein B-BOX 7/CONSTANS-LIKE 9 (MdBBX7/MdCOL9), which plays a positive role in apple drought tolerance. The overexpression of MdBBX7 enhanced drought tolerance, whereas knocking down MdBBX7 expression reduced it. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis identified one cis-element of MdBBX7, CCTTG, as well as its known binding motif, the T/G box. ChIP-seq and RNA-seq identified 1,197 direct targets of MdBBX7, including ETHYLENE RESPONSE FACTOR (ERF1), EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15), and GOLDEN2-LIKE 1 (GLK1) and these were further verified by ChIP-qPCR and electronic mobility shift assays. Yeast two-hybrid screen identified an interacting protein of MdBBX7, RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1). Further examination revealed that MdMIEL1 could mediate the ubiquitination and degradation of MdBBX7 by the 26S proteasome pathway. Genetic interaction analysis suggested that MdMIEL1 acts as an upstream factor of MdBBX7. In addition, MdMIEL1 was a negative regulator of the apple drought stress response. Taken together, our results illustrate the molecular mechanisms by which the MdMIEL1-MdBBX7 module influences the response of apple to drought stress.


Asunto(s)
Deshidratación/genética , Deshidratación/fisiopatología , Malus/genética , Malus/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Dedos de Zinc , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente
13.
Plant Physiol ; 188(3): 1686-1708, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34893896

RESUMEN

Drought stress tolerance is a complex trait regulated by multiple factors. Here, we demonstrate that the miRNA160-Auxin Response Factor 17 (ARF17)-HYPONASTIC LEAVES 1 module is crucial for apple (Malus domestica) drought tolerance. Using stable transgenic plants, we found that drought tolerance was improved by higher levels of Mdm-miR160 or MdHYL1 and by decreased levels of MdARF17, whereas reductions in MdHYL1 or increases in MdARF17 led to greater drought sensitivity. Further study revealed that modulation of drought tolerance was achieved through regulation of drought-responsive miRNA levels by MdARF17 and MdHYL1; MdARF17 interacted with MdHYL1 and bound to the promoter of MdHYL1. Genetic analysis further suggested that MdHYL1 is a direct downstream target of MdARF17. Importantly, MdARF17 and MdHYL1 regulated the abundance of Mdm-miR160. In addition, the Mdm-miR160-MdARF17-MdHYL1 module regulated adventitious root development. We also found that Mdm-miR160 can move from the scion to the rootstock in apple and tomato (Solanum lycopersicum), thereby improving root development and drought tolerance of the rootstock. Our study revealed the mechanisms by which the positive feedback loop of Mdm-miR160-MdARF17-MdHYL1 influences apple drought tolerance.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Sequías , Ácidos Indolacéticos/metabolismo , Malus/genética , Malus/metabolismo , MicroARNs/efectos de los fármacos , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Deshidratación/genética , Deshidratación/fisiopatología , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente
14.
Plant J ; 109(5): 1271-1289, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34918398

RESUMEN

Drought significantly limits apple fruit production and quality. Decoding the key genes involved in drought stress tolerance is important for breeding varieties with improved drought resistance. Here, we identified GRETCHEN HAGEN3.6 (GH3.6), an indole-3-acetic acid (IAA) conjugating enzyme, to be a negative regulator of water-deficit stress tolerance in apple. Overexpressing MdGH3.6 reduced IAA content, adventitious root number, root length and water-deficit stress tolerance, whereas knocking down MdGH3.6 and its close paralogs increased IAA content, adventitious root number, root length and water-deficit stress tolerance. Moreover, MdGH3.6 negatively regulated the expression of wax biosynthetic genes under water-deficit stress and thus negatively regulated cuticular wax content. Additionally, MdGH3.6 negatively regulated reactive oxygen species scavengers, including antioxidant enzymes and metabolites involved in the phenylpropanoid and flavonoid pathway in response to water-deficit stress. Further study revealed that the homolog of transcription factor AtMYB94, rather than AtMYB96, could bind to the MdGH3.6 promoter and negatively regulated its expression under water-deficit stress conditions in apple. Overall, our results identify a candidate gene for the improvement of drought resistance in fruit trees.


Asunto(s)
Malus , Deshidratación , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Malus/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Agua/metabolismo
15.
Plant Physiol Biochem ; 168: 83-92, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34627025

RESUMEN

As RNA chaperones, cold shock proteins (CSPs) are essential for cold adaptation. Although the functions of CSPs in cold response have been demonstrated in several species, the roles of CSPs in response to drought are largely unknown. Here, we demonstrated that MdCSP3, a downstream target gene of MdMYB88 and MdMYB124, contributes to drought tolerance in apple (Malus × domestica). MdCSP3 responds to various abiotic stresses, including drought, cold, heat, and salt stress. Compared with non-transgenic apple GL-3, the MdCSP3 overexpressing plants exhibit significantly lower drought resistance and a reduced capacity for ROS scavenging by the regulation of antioxidant enzymes SOD, CAT, and POD. Additionally, RNA-seq data shows that MdCSP3 regulates expression of genes involved in oxidative stress response. Taken together, our results demonstrate the functions of MdCSP3 in apple drought tolerance, and this finding provides a new direction for breeding of drought resistant apple.


Asunto(s)
Malus , Proteínas y Péptidos de Choque por Frío/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Estrés Oxidativo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico
16.
Plant Sci ; 302: 110695, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288008

RESUMEN

Freezing stress is a major environmental factor that threatens the growth and development of fruit trees. MdMYB88 and its paralogue MdMYB124 have been identified as pivotal regulators in apple (Malus × domestica) freezing stress tolerance. Here, we demonstrated that a target of MdMYB88 and MdMYB124, TIME FOR COFFEE (TIC), contributes to freezing tolerance in apple. MdMYB88 and MdMYB124 directly bound the MdTIC promoter and positively regulated its expression under cold conditions. MdTIC RNAi plants displayed reduced freezing tolerance when MdTIC expression was repressed. Moreover, MdTIC RNAi plants lowered antioxidant enzyme activity. Transcriptome profiling revealed altered expression of cold-responsive genes in MdTIC RNAi plants under cold conditions, including MdPLC2, MdMKK2, and MdICE1. We also discovered that disordered MdTIC expression changed the saturation of fatty acids. Taken together, our data suggest that MdTIC is required for apple to tolerate freezing by mediating the expression of cold-responsive genes and fatty acid composition.


Asunto(s)
Ácidos Grasos/metabolismo , Malus/genética , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Respuesta al Choque por Frío , Congelación , Malus/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Transcriptoma
17.
Plants (Basel) ; 11(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35009106

RESUMEN

Drought stress is a significant environmental factor limiting crop growth worldwide. Malus prunifolia is an important apple species endemic to China and is used for apple cultivars and rootstocks with great drought tolerance. N6-methyladenosine (m6A) is a common epigenetic modification on messenger RNAs (mRNAs) in eukaryotes which is critical for various biological processes. However, there are no reports on m6A methylation in apple response to drought stress. Here, we assessed the m6A landscape of M. prunifolia seedlings in response to drought and analyzed the association between m6A modification and transcript expression. In total, we found 19,783 and 19,609 significant m6A peaks in the control and drought treatment groups, respectively, and discovered a UGUAH (H: A/U/C) motif. In M. prunifolia, under both control and drought conditions, peaks were highly enriched in the 3' untranslated region (UTR) and coding sequence (CDS). Among 4204 significant differential m6A peaks in drought-treated M. prunifolia compared to control-treated M. prunifolia, 4158 genes with m6A modification were identified. Interestingly, a large number of hypermethylated peaks (4069) were stimulated by drought treatment compared to hypomethylation. Among the hypermethylated peak-related genes, 972 and 1238 differentially expressed genes (DEGs) were up- and down-regulated in response to drought, respectively. Gene ontology (GO) analyses of differential m6A-modified genes revealed that GO slims related to RNA processing, epigenetic regulation, and stress tolerance were significantly enriched. The m6A modification landscape depicted in this study sheds light on the epigenetic regulation of M. prunifolia in response to drought stress and indicates new directions for the breeding of drought-tolerant apple trees.

18.
Hortic Res ; 7(1): 195, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328433

RESUMEN

DNA-binding one zinc-finger (Dof) proteins constitute a family of transcription factors with a highly conserved Dof domain that contains a C2C2 zinc-finger motif. Although several studies have demonstrated that Dof proteins are involved in multiple plant processes, including development and stress resistance, the functions of these proteins in drought stress resistance are largely unknown. Here, we report the identification of the MdDof54 gene from apple and document its positive roles in apple drought resistance. After long-term drought stress, compared with nontransgenic plants, MdDof54 RNAi plants had significantly shorter heights and weaker root systems; the transgenic plants also had lower shoot and root hydraulic conductivity, as well as lower photosynthesis rates. By contrast, compared with nontransgenic plants, MdDof54-overexpressing plants had higher photosynthesis rates and shoot hydraulic conductivity under long-term drought stress. Moreover, compared with nontransgenic plants, MdDof54-overexpressing plants had higher survival percentages under short-term drought stress, whereas MdDof54 RNAi plants had lower survival percentages. MdDof54 RNAi plants showed significant downregulation of 99 genes and significant upregulation of 992 genes in response to drought, and 366 of these genes were responsive to drought. We used DAP-seq and ChIP-seq analyses to demonstrate that MdDof54 recognizes cis-elements that contain an AAAG motif. Taken together, our results provide new information on the functions of MdDof54 in plant drought stress resistance as well as resources for apple breeding aimed at the improvement of drought resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...