Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Phys Rev Lett ; 132(15): 152502, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682998

RESUMEN

^{134}Xe is a candidate isotope for neutrinoless double beta decay (0νßß) search. In addition, the two-neutrino case (2νßß) allowed by the standard model of particle physics has not yet been observed. With the 656-kg natural xenon in the fiducial volume of the PandaX-4T detector, which contains 10.4% of ^{134}Xe, and its initial 94.9-day exposure, we have established the most stringent constraints on 2νßß and 0νßß of ^{134}Xe half-lives, with limits of 2.8×10^{22} yr and 3.0×10^{23} yr at 90% confidence level, respectively. The 2νßß (0νßß) limit surpasses the previously reported best result by a factor of 32 (2.7), highlighting the potential of large monolithic natural xenon detectors for double beta decay searches.

2.
J Alzheimers Dis Rep ; 8(1): 461-477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549642

RESUMEN

Background: Neuronal loss occurs early and is recognized as a hallmark of Alzheimer's disease (AD). Promoting neurogenesis is an effective treatment strategy for neurodegenerative diseases. Traditional Chinese herbal medicines serve as a rich pharmaceutical source for modulating hippocampal neurogenesis. Objective: Gallic acid (GA), a phenolic acid extracted from herbs, possesses anti-inflammatory and antioxidant properties. Therefore, we aimed to explore whether GA can promote neurogenesis and alleviate AD symptoms. Methods: Memory in mice was assessed using the Morris water maze, and protein levels were examined via western blotting and immunohistochemistry. GA's binding site in the promoter region of transcription regulator nuclear factor erythroid 2-related factor 2 (Nrf2) was calculated using AutoDock Vina and confirmed by a dual luciferase reporter assay. Results: We found that GA improved spatial memory by promoting neurogenesis in the hippocampal dentate gyrus zone. It also improved synaptic plasticity, reduced tau phosphorylation and amyloid-ß concentration, and increased levels of synaptic proteins in APP/PS1 mice. Furthermore, GA inhibited the activity of glycogen synthase kinase-3ß (GSK-3ß). Bioinformatics tools revealed that GA interacts with several amino acid sites on GSK-3ß. Overexpression of GSK-3ß was observed to block the protective effects of GA against AD-like symptoms, while GA promoted neurogenesis via the GSK-3ß-Nrf2 signaling pathway in APP/PS1 mice. Conclusions: Based on our collective findings, we hypothesize that GA is a potential pharmaceutical agent for alleviating the pathological symptoms of AD.

3.
ACS Nano ; 18(9): 6863-6886, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386537

RESUMEN

Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1ß, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Animales , Ratones , Microambiente Tumoral , Biomimética , Neoplasias/terapia , Inmunidad
4.
Phys Rev Lett ; 131(19): 191002, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38000419

RESUMEN

We report results of a search for dark-matter-nucleon interactions via a dark mediator using optimized low-energy data from the PandaX-4T liquid xenon experiment. With the ionization-signal-only data and utilizing the Migdal effect, we set the most stringent limits on the cross section for dark matter masses ranging from 30 MeV/c^{2} to 2 GeV/c^{2}. Under the assumption that the dark mediator is a dark photon that decays into scalar dark matter pairs in the early Universe, we rule out significant parameter space of such thermal relic dark-matter model.

5.
Aging (Albany NY) ; 15(22): 13265-13286, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37988189

RESUMEN

BACKGROUND: The association between Killer cell lectin like receptor B1 (KLRB1) and cancer has been reported, but the roles of KLRB1 in breast invasive carcinoma (BRCA) has not been fully revealed. METHODS: Our study utilized the Cancer Genome Atlas (TCGA), Kaplan-Meier (K-M) Plotter, and TIMER databases to investigate the expression and clinical relevance of KLRB1 in BRCA and to explore its roles and mechanism in BRCA progression using gene set enrichment analysis, CCK-8, migration, apoptosis, and western blotting. We examined the relationship between KLRB1 expression and the BRCA immune microenvironment, using data from TCGA, and Gene Expression Profiling Interactive Analysis (GEPIA) databases and validated these findings in K-M Plotter databases. RESULTS: A significant decrease of KLRB1 expression was observed in BRCA patients. BRCA patients with low KLRB1 levels were associated with older age, advanced disease stage, HER2-positivity, poor prognosis, and a decreased survival probability compared to the high-expression group. Increased KLRB1 expression levels were correlated with inhibition of breast cancer cell proliferation, migration, and invasion, as well as promotion of cell apoptosis, possible through regulation of the NF-κB, PI3K/AKT, and TNF signaling pathways. Moreover, the study also indicated that decreased KLRB1 expression correlated with tumor purity, immune score, and immune cell infiltration (B cells, CD8+ T cells, CD4+ T cells, neutrophils, dendritic cells, among others), cell markers, and immunotherapy. CONCLUSION: Decreased KLRB1 expression in BRCA is associated with poor prognosis and immune microenvironment. This study also highlights KLRB1 as a potential molecular marker for poor prognosis in BRCA patients, and therefore, it may provide clinical implications for the management of patients with BRCA.


Asunto(s)
Neoplasias de la Mama , Carcinoma , Humanos , Femenino , Linfocitos T CD8-positivos , Fosfatidilinositol 3-Quinasas , Neoplasias de la Mama/genética , Pronóstico , Biomarcadores de Tumor/genética , Microambiente Tumoral/genética , Subfamilia B de Receptores Similares a Lectina de Células NK
6.
J Nanobiotechnology ; 21(1): 326, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684628

RESUMEN

Vaccine is one of the most promising strategies for cancer immunotherapy; however, there are no therapeutic cancer vaccine achieving significant clinical efficacy till now. The main limiting factors include the immune suppression and escape mechanisms developed by tumor and not enough capacity of vaccines to induce a vigorous anti-tumor immunity. This study aimed to develop a strategy of membrane-based biomimetic nanovaccine and investigate the immunological outcomes of utilizing the unique immunostimulatory mechanisms derived of immunogenic cell death (ICD) and of fulfilling a simultaneous nanoscale delivery of a highlighted tumor antigen and broad membrane-associated tumor antigens in the vaccine design. TC-1 tumor cells were treated in vitro with a mixture of mitoxantrone and curcumin for ICD induction, and then chitosan (CS)-coated polylactic co-glycolic acid (PLGA) nanoparticles loaded with HPV16 E744-62 peptides were decorated with the prepared ICD tumor cell membrane (IM); further, the IM-decorated nanoparticles along with adenosine triphosphate (ATP) were embedded with sodium alginate (ALG) hydrogel, And then, the immunological features and therapeutic potency were evaluated in vitro and in vivo. The nanovaccine significantly stimulated the migration, antigen uptake, and maturation of DCs in vitro, improved antigen lysosome escape, and promoted the retention at injection site and accumulation in LNs of the tumor antigen in vivo. In a subcutaneously grafted TC-1 tumor model, the therapeutic immunization of nanovaccine elicited a dramatical antitumor immunity. This study provides a strategy for the development of tumor vaccines.


Asunto(s)
Vacunas contra el Cáncer , Muerte Celular Inmunogénica , Inmunización , Inmunoterapia , Antígenos de Neoplasias
7.
Thyroid ; 33(9): 1055-1063, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37566523

RESUMEN

Background: Preterm infants presented a high prevalence of congenital hypothyroidism (CH), while the optimal screening pattern is still under debate. This study aimed at evaluating the characteristics of thyroid function by conducting weekly screening during the first month of life in very preterm infants (VPIs) to achieve timely diagnosis and treatment of CH. Methods: A prospective cohort study was carried out on VPIs born with gestational age (GA) <32 weeks (w) and admitted to the participating institutes from January 1, 2019 to December 31, 2022. Serial serum thyroid hormone levels were measured weekly within the first month after birth, and at 36 w of corrected age, or before discharge. Datasets for serial thyroid hormone levels and general information were obtained. Results: A total of 5992 VPIs were enrolled in this study, of which 456 (7.6%) [95% confidence interval (CI), 6.9-8.3%] were diagnosed with CH. The incidence of CH increased with lower GA, moving from 4.8% [CI, 3.4-6.1%] at GA 31 w to 16.9% [CI, 8.3-25.4%] at GA <26 w. Among the CH subjects, 57.7% [CI, 53.1-62.2%] were identified after the first screening and classified as delayed thyrotropin elevation (dTSH). With the decrease of GA, the proportion of dTSH also increased, moving from 38.1% [CI, 27.5-48.7%] at GA 31 w to 82.6% [CI, 65.8-99.4%] at GA <26 w. Through conducting weekly screening of thyroid function, it was remarkable that only 42.3% [CI, 37.8-46.9%] of CH subjects were diagnosed during the first screening. The cumulative rate of CH identified by rescreening performed at the second, third, and fourth week was 76.1% [CI, 72.2-80.0%], 90.6% [CI, 87.9-93.3%], and 98.9% [CI, 97.9-99.9%], respectively. Conclusion: The incidence of CH and dTSH both increase with lower GA in VPIs. Dynamic screening of thyroid function by weeks within the first month of life is crucial for the timely diagnosis and treatment of CH in VPIs, and it might effectively reduce the implications of missed diagnosis and delayed treatment. Clinical Trials Registration: ChiCTR1900025234 and ChiCTR2000037918 (Registration number).


Asunto(s)
Hipotiroidismo Congénito , Lactante , Recién Nacido , Humanos , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/epidemiología , Recien Nacido Prematuro , Estudios Prospectivos , Tiroxina , Tamizaje Neonatal , Hormonas Tiroideas/uso terapéutico , Tirotropina
8.
Phys Rev Lett ; 131(4): 041001, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566838

RESUMEN

We report a search for light dark matter produced through the cascading decay of η mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasielastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne·year exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross section is set at 5.9×10^{-37} cm^{2} for a dark matter mass of 0.1 MeV/c^{2} and mediator mass of 300 MeV/c^{2}. The lowest upper limit of η to the dark matter decay branching ratio is 1.6×10^{-7}.

9.
Small ; 19(50): e2302922, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37649222

RESUMEN

The notorious limitation of conventional surgical excision of primary tumor is the omission of residual and occult tumor cells, which often progress to recurrence and metastasis, leading to clinical treatment failure. The therapeutic vaccine is emerging as a promising candidate for dealing with the issue of postsurgical tumor residuals or nascent metastasis. Here, a flexible and modularized nanovaccine scaffold based on the SpyCatcher003-decorated shell (S) domain of norovirus (Nov) is employed to support the presentation of varied tumor neoantigens fused with SpyTag003. The prepared tumor neoantigen-based nanovaccines (Neo-NVs) are able to efficiently target to lymph nodes and engage with DCs in LNs, triggering strong antigen-specific T-cell immunity and significantly inhibiting the growth of established orthotopic 4T1 breast tumor in mice. Further, the combination of Neo-NVs and anti-PD-1 monoclonal antibody (mAb) produces significant inhibition on postsurgical tumor recurrence and metastasis and induces a long-lasting immune memory. In conclusion, the study provides a simple and reliable strategy for rapid preparing personalized neoantigens-based cancer vaccines and engaging checkpoint treatment to restore the capability of tumor immune surveillance and clearance in surgical patients.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico , Recurrencia Local de Neoplasia , Inmunoterapia , Neoplasias/terapia
10.
Phys Rev Lett ; 130(26): 261001, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37450819

RESUMEN

We report the search results of light dark matter through its interactions with shell electrons and nuclei, using the commissioning data from the PandaX-4T liquid xenon detector. Low energy events are selected to have an ionization-only signal between 60 to 200 photoelectrons, corresponding to a mean nuclear recoil energy from 0.77 to 2.54 keV and electronic recoil energy from 0.07 to 0.23 keV. With an effective exposure of 0.55 tonne·year, we set the most stringent limits within a mass range from 40 MeV/c^{2} to 10 GeV/c^{2} for pointlike dark matter-electron interaction, 100 MeV/c^{2} to 10 GeV/c^{2} for dark matter-electron interaction via a light mediator, and 3.2 to 4 GeV/c^{2} for dark matter-nucleon spin-independent interaction. For DM interaction with electrons, our limits are closing in on the parameter space predicted by the freeze-in and freeze-out mechanisms in the early Universe.


Asunto(s)
Núcleo Celular , Electrones
11.
IBRO Neurosci Rep ; 14: 398-406, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37388496

RESUMEN

We used low and high molecular weight fluorescence tracers to investigate the entry of foreign solutes into the brain parenchyma and their exit from it by the glymphatic system, during experimentally induced depressive-like behavior in rats. The tail suspension test (TST), as an acute stressor, is known to induce such a type of behavior, considered to model the human major depressive disorder (MDD). Electroacupuncture (EAP) relieves both depressive-like behavior in rodents and the symptoms of MDD in humans. Here we report that 180 min after the intracisternal injection of the low molecular weight tracer Fluorescein-5-Isothiocianate Conjugated Dextran (FITC-d3), a 15-min duration TST tended to increase the control fluorescence in the brain of rats. Both EAP and sham EAP decreased the fluorescence of FITC-d3 in comparison with the TST, but not the control value. In addition, EAP and sham EAP counteracted the effects of TST. The high molecular weight tracer Ovalbumin Alexa Fluor 555 Conjugate (OA-45) failed to enter the brain parenchyma and accumulated at more superficial sites; however, EAP or sham EAP modified the distribution of fluorescence under TST application in a similar manner as that observed during the use of FITC-d3. It is concluded that EAP is possibly a valid treatment to slow down the entry of foreign solutes into the brain; in view of the comparable effects of EAP on FITC-d3 and OA-45 distribution, EAP seems to act before FITC-d3 passes the astroglial aquaporin-4 water channels, which are a critical constituent of the glymphatic system.

12.
Ren Fail ; 45(1): 2195012, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37013479

RESUMEN

IgA nephropathy (IgAN), an immune-mediated chronic inflammatory kidney disease, is the most common primary glomerular disease in Asia, especially in China and Japan. The pathogenesis of IgAN is complex, and the main cause of IgAN is explained by the 'multiple hit' theory, which states that the deposition of immune complexes in renal mesangial cells induces chronic inflammation that leads to kidney damage. Chronic inflammation is associated with iron metabolism, which also plays an essential role in the pathogenesis, progression, diagnosis and prognosis of IgAN. Overall, this review aimed to explore the application of iron metabolism in IgAN by systematically elaborating the relationship between iron metabolism and chronic inflammation in IgAN to speculate on the possible diagnostic and therapeutic significance of iron metabolism indicators in IgAN.


Asunto(s)
Glomerulonefritis por IGA , Insuficiencia Renal Crónica , Humanos , Glomerulonefritis por IGA/patología , Inmunoglobulina A , Riñón/patología , Insuficiencia Renal Crónica/complicaciones , Inflamación , Hierro
13.
J Nanobiotechnology ; 21(1): 74, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864424

RESUMEN

Innate immune cells are critical in antitumor immune surveillance and the development of antitumor adaptive cellular immunity. Trained innate immune cells demonstrate immune memory-like characteristics, producing more vigorous immune responses to secondary homologous or heterologous stimuli. This study aimed to investigate whether inducing trained immunity is beneficial when using a tumor vaccine to promote antitumor adaptive immune responses. A biphasic delivery system was developed with the trained immunity inducer Muramyl Dipeptide (MDP) and specific tumor antigen human papillomavirus (HPV) E7 peptide encapsulated by poly(lactide-co-glycolide)-acid(PLGA) nanoparticles (NPs), and the NPs along with another trained immunity agonist, ß-glucan, were further embedded in a sodium alginate hydrogel. The nanovaccine formulation demonstrated a depot effect for E7 at the injection site and targeted delivery to the lymph nodes and dendritic cells (DCs). The antigen uptake and maturation of DCs were significantly promoted. A trained immunity phenotype, characterized by increased production of IL-1ß, IL-6, and TNF-α, was induced in vitro and in vivo in response to secondary homologous or heterologous stimulation. Furthermore, prior innate immune training enhanced the antigen-specific INF-γ-expressing immune cell response elicited by subsequent stimulation with the nanovaccine. Immunization with the nanovaccine completely inhibited the growth of TC-1 tumors and even abolished established tumors in mice. Mechanistically, the inclusion of ß-glucan and MDP significantly enhanced the responses of tumor-specific effector adaptive immune cells. The results strongly suggest that the controlled release and targeted delivery of an antigen and trained immunity inducers with an NP/hydrogel biphasic system can elicit robust adaptive immunity, which provides a promising tumor vaccination strategy.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , beta-Glucanos , Humanos , Animales , Ratones , Adyuvantes Inmunológicos/farmacología , Neoplasias/tratamiento farmacológico , beta-Glucanos/farmacología , Inmunización , Hidrogeles
14.
ACS Nano ; 17(4): 3412-3429, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779845

RESUMEN

In recent years, virus-derived self-assembled protein nanoparticles (NPs) have emerged as attractive antigen delivery platforms for developing both preventive and therapeutic vaccines. In this study, we exploited the genetically engineered Norovirus S domain (Nov-S) with SpyCatcher003 fused to the C-terminus to develop a robust, modular, and versatile NP-based carrier platform (Nov-S-Catcher003). The NPs can be conveniently armed in a plug-and-play pattern with SpyTag003-linked antigens. Nov-S-Catcher003 was efficiently expressed in Escherichia coli and self-assembled into highly uniform NPs with a purified protein yield of 97.8 mg/L. The NPs presented high stability at different maintained temperatures and after undergoing differing numbers of freeze-thaw cycles. Tumor vaccine candidates were easily obtained by modifying Nov-S-Catcher003 NPs with SpyTag003-linked tumor antigens. Nov-S-Catcher003-antigen NPs significantly promoted the maturation of bone marrow-derived dendritic cells in vitro and were capable of efficiently migrating to lymph nodes in vivo. In TC-1 and B16F10 tumor-bearing mice, the subcutaneous immunization of NPs elicited robust tumor-specific T-cell immunity, reshaped the tumor microenvironment, and inhibited tumor growth. In the TC-1 model, the NPs even completely abolished established tumors. In conclusion, the Nov-S-Catcher003 system is a promising delivery platform for facilitating the development of NP-based cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Norovirus , Animales , Ratones , Norovirus/genética , Linfocitos T , Inmunización , Nanopartículas/química , Neoplasias/tratamiento farmacológico
15.
Phys Rev Lett ; 130(2): 021802, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36706410

RESUMEN

A search for interactions from solar ^{8}B neutrinos elastically scattering off xenon nuclei using PandaX-4T commissioning data is reported. The energy threshold of this search is further lowered compared with the previous search for dark matter, with various techniques utilized to suppress the background that emerges from data with the lowered threshold. A blind analysis is performed on the data with an effective exposure of 0.48 tonne year, and no significant excess of events is observed. Among the results obtained using the neutrino-nucleus coherent scattering, our results give the best constraint on the solar ^{8}B neutrino flux. We further provide a more stringent limit on the cross section between dark matter and nucleon in the mass range from 3 to 9 GeV/c^{2}.

16.
Front Endocrinol (Lausanne) ; 13: 914865, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568100

RESUMEN

Aim: We evaluated a novel treatment for obesity-related renal, an ATP-citrate lyase (ACL) inhibitor, to attenuate ectopic lipid accumulation (ELA) in the kidney and the ensuing inflammation. Materials and methods: An ACL inhibitor was administered intragastrically to 12-week-old db/db mice for 30 days. The appearance of ELA was observed by staining kidney sections with Oil Red O, and the differences in tissue lipid metabolites were assessed by mass spectrometry. The anti-obesity and renoprotection effects of ACL inhibitors were observed by histological examination and multiple biochemical assays. Results: Using the AutoDock Vina application, we determined that among the four known ACL inhibitors (SB-204990, ETC-1002, NDI-091143, and BMS-303141), BMS-303141 had the highest affinity for ACL and reduced ACL expression in the kidneys of db/db mice. We reported that BMS-303141 administration could decrease the levels of serum lipid and renal lipogenic enzymes acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), HMG-CoA reductase (HMGCR), and diminish renal ELA in db/db mice. In addition, we found that reducing ELA improved renal injuries, inflammation, and tubulointerstitial fibrosis. Conclusion: ACL inhibitor BMS-303141 protects against obesity-related renal injuries.


Asunto(s)
Inhibidores Enzimáticos , Riñón , Ratones , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Obesidad , Inflamación , Adenosina Trifosfato
17.
Front Pharmacol ; 13: 1053253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582539

RESUMEN

Ischemic stroke (IS) has been associated with an impairment in glymphatic function. Xuefu Zhuyu Decoction (XFZYD) is widely used in the prevention and treatment of ischemic stroke. We hypothesized that Xuefu Zhuyu decoction pretreatment could attenuate early neurological deficits after ischemic stroke by enhancing the function of the glymphatic system. To prove our hypothesis, we carried out temporary middle cerebral artery occlusion and reperfusion surgery on C57BL/6 mice and then measured neurological score, infarct size and performed hematoxylin-eosin staining to assess stroke outcomes after 24 h of reperfusion. Subsequently, we injected fluorescent tracers in to the cisterna magna and evaluated tracer distribution in coronal brain sections. The polarization of aquaporin-4 (AQP4), colocalization of aquaporin-4, α-dystroglycan, ß-dystroglycan and agrin were determined by immunofluorescence. Our research showed that pretreatment with Xuefu Zhuyu decoction significantly alleviated neurological scores, neurological deficits and pathological abnormalities in a mouse model of ischemic stroke. Importantly, Xuefu Zhuyu decoction pretreatment enhanced cerebrospinal fluid influx, protected aquaporin-4 depolarization and promoted the colocalization of aquaporin-4 with its anchoring proteins in the brain. Our findings highlight novel mechanisms underlying the neuroprotective effect of Xuefu Zhuyu decoction pretreatment on ischemic stroke-induced brain damage through the glymphatic system. Xuefu Zhuyu decoction pretreatment may offer a promising approach to slow the onset and progression of ischemic stroke.

18.
Sci Bull (Beijing) ; 67(2): 125-132, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36546005

RESUMEN

The 25Mg(p, γ)26Al reaction plays an important role in the study of cosmic 1.809 MeV γ-ray as a signature of ongoing nucleosynthesis in the Galaxy. At astrophysical temperature around 0.1 GK, the 25Mg(p, γ)26Al reaction rates are dominated by the 92 keV resonance capture process. We report a precise measurement of the 92 keV 25Mg(p, γ)26Al resonance in the day-one experiment at Jinping Underground Nuclear Astrophysics experiment (JUNA) facility in the China Jinping Underground Laboratory (CJPL). The resonance strength and ground state feeding factor are determined to be 3.8±0.3 ×10-10 eV and 0.66±0.04, respectively. The results are in agreement with those reported in the previous direct underground measurement within uncertainty, but with significantly reduced uncertainties. Consequently, we recommend new 25Mg(p, γ)26Al reaction rates which are by a factor of 2.4 larger than those adopted in REACLIB database at the temperature around 0.1 GK. The new results indicate higher production rates of 26gAl and the cosmic 1.809 MeV γ-ray. The implication of the new rates for the understanding of other astrophysical situations is also discussed.

19.
Am J Transl Res ; 14(11): 7705-7725, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505278

RESUMEN

OBJECTIVES: To create a prognostic model based on differentially expressed genes (DEGs) in early lung squamous cell carcinoma (LUSC) and characterize the relationship between risk scores and tumor immune infiltration. METHODS: We identified DEGs in normal and tumor tissues that overlapped between LUSC-related data sets from the Gene Expression Omnibus and the Cancer Genome Atlas and evaluated their roles in the diagnosis and prognosis of LUSC by Kaplan-Meier survival analysis, receiver operating characteristic (ROC) analysis, meta-analysis and nomogram analysis. We then constructed a risk model based on Cox regression analysis and the Akaike information criterion and identified the relationship between LUSC risk scores and immune infiltration. RESULTS: Sixty-two overlapping DEGs were involved with keratinocyte differentiation, epidermal cell differentiation, neutrophil migration, granulocyte chemotaxis, granulocyte migration, leukocyte aggregation, and positive regulation of nuclear factor-κB (NF-κB) activity. Overexpression of family with sequence similarity 83 member A (FAM83A) and MYC target 1 (MYCT1), kallikrein related peptidase 8 (KLK8), and downregulation of ADP ribosylation factor like GTPase 14 (ARL14), caspase recruitment domain family member 14 (CARD14), cystatin A (CSTA), dickkopf WNT signaling pathway inhibitor 4 (DKK4), desmoglein 3 (DSG3), and keratin 6B (KRT6B) were associated with a poor prognosis in LUSC and had significant value for LUSC diagnosis. The expression of CSTA, FAM83A, and MYCT1 and high-risk scores were independent risk factors for a poor prognosis in LUSC. A risk nomogram revealed that risk scores could predict the prognosis of LUSC. The risk score was associated with neutrophils, naive B cells, helper follicular T cells, and activated dendritic cells. CONCLUSIONS: The expression levels of CSTA, FAM83A, and MYCT1 are related to the diagnosis and prognosis of LUSC and may have potential as therapeutic targets in LUSC. A risk model and nomogram based on CSTA, FAM83A, and MYCT1 can predict the prognosis of LUSC.

20.
Front Immunol ; 13: 991857, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189310

RESUMEN

The variability and heterogeneity of tumor antigens and the tumor-driven development of immunosuppressive mechanisms leading to tumor escape from established immunological surveillance. Here, the tumor cells were genetically modified to achieve an inducible overexpression of the N-terminal domain of gasdermin D (GSDMD-NT) and effectively cause pyroptosis under a strict control. Pyroptotic tumor cells release damage-associated molecular patterns (DAMPs) and inflammatory cytokines to promote the maturation and migration of bone marrow-derived dendritic cells (BMDCs). Furthermore, local tumor delivery, and preventive or therapeutic subcutaneous immunization of the modified cells, followed by the induction of GSDMD-NT expression, significantly stimulated both the systemic and local responses of antitumor immunity, and reprogrammed the tumor microenvironment, leading to the dramatic suppression of tumor growth in mice. This study has explored the application potency of inducing the pyroptosis of tumor cells in the field of tumor immunotherapy, especially for developing a new and promising personalized tumor vaccine.


Asunto(s)
Vacunas contra el Cáncer , Piroptosis , Animales , Animales Modificados Genéticamente , Antígenos de Neoplasias , Citocinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...