Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(16): 12778-12785, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38619587

RESUMEN

Carbon materials with full sp2-hybridized buckling is a major challenge pervading fundamental nanoscience and nanotechnology research. Carbon atoms that are sp2 hybridized prefer to form hexagonal rings, such as in carbon nanotubes and graphene, which are low-dimensional materials. The incorporation of heptagonal, octagonal, and/or larger rings into a hexagonal sp2 carbon meshwork has been identified as a strategy for assembling three-dimensional (3D) sp2 carbon crystals, and one of the typical representatives are Schwarzite carbons, which possess a negative surface Gaussian curvature as well as unique physical properties. Herein, a 3D Schwarzite carbon consisting of only sp2-buckled heptagonal carbon rings, which is referred to as Hepta-carbon, is proposed based on first-principles calculations. Hepta-carbon is mechanically and thermodynamically stable, and energetically more favourable than experimental graphdiyne, fullerene C20 and most Schwarzite carbons under ambient conditions. Molecular dynamics simulations indicate that Hepta-carbon exhibits high-temperature thermostability up to 1500 K. Band structure and mechanical property simulations indicate that Hepta-carbon is a semi-metallic material with electron conduction and exhibits impressive mechanical properties such as high strength with quasi-isotropy, high incompressibility similar to diamonds, elastic deformation behaviour under uniaxial stress, and high ductility. Hepta-carbon presents a porous network with a low mass density of 1.84 g cm-3 and connected channels with diameters of 3.3-6.1 Å. Theoretical simulations of gas adsorption energy demonstrate that Hepta-carbon can effectively adsorb and stabilize greenhouse gases, including N2O, CO2, CH4, and SF6.

2.
Phys Chem Chem Phys ; 26(14): 10932-10939, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38525965

RESUMEN

Novel materials displaying multiple exceptional properties are the backbone of the advancement of various industries. In the field of carbon materials, the combination of different properties has been extensively developed to satisfy diverse application scenarios, for instance, conductivity paired with exceptional hardness, outstanding toughness coupled with super-hardness, or heat resistance combined with super-hardness. In this work, a new carbon allotrope, bcc-C40 carbon, was predicted and investigated using first-principles calculations based on density functional theory. The allotrope exhibits unique structural features, including a combination of sp3 hybridized diatomic carbon and four-fold carbon chains. The mechanical and dynamic stability of bcc-C40 carbon has been demonstrated by its elastic constants and phonon spectra. Additionally, bcc-C40 carbon exhibits remarkable mechanical properties, such as zero homogeneous Poisson's ratio, superhardness with a value of 58 GPa, and stress-adaptive toughening. The analysis of the electronic properties demonstrates that bcc-C40 carbon is a semiconductor with an indirect band gap of 3.255 eV within the HSE06 functional, which increases with the increase in pressure. At a pressure of 150 GPa, bcc-C40 carbon transforms into a direct band gap material. These findings suggest the prospective use of bcc-C40 carbon as a superhard material and a novel semiconductor.

3.
Nature ; 626(8000): 779-784, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383626

RESUMEN

Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1-5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics.

4.
Phys Chem Chem Phys ; 25(40): 27373-27379, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37791950

RESUMEN

Three novel hexagonal Si-C-N structures, namely SiC3N3, SiC7N6, and SiC13N14, were constructed on the basis of the α-Si3N4 crystal structure. The stability of the three structures is demonstrated by analyzing their elastic constants and phonon dispersion spectra and by calculating their formation energies. The calculated band structures and partial densities of states suggest that the SiC3N3 and SiC7N6 structures possess hole conductivity. The electron orbital analyses indicate that the SiC3N3 and SiC7N6 crystals possess three-dimensional and one-dimensional conductivity, respectively. SiC13N14 is a semiconductor with a wide bandgap of 4.39 eV. Based on two different hardness models and indentation shear stress calculations, the Vickers hardness values of SiC3N3, SiC7N6, and SiC13N14 are estimated to be 28.04/28.45/16.18 GPa, 31.17/34.19/20.24 GPa, and 40.60/41.59/36.40 GPa. This result indicates that SiC3N3 and SiC7N6 are conductive hard materials while SiC13N14 is a quasi superhard material.

5.
Phys Chem Chem Phys ; 25(32): 21573-21578, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37548373

RESUMEN

Compared with traditional structure prediction methods, the purposeful bottom-up approach is better able to obtain structures with specified performance. In this study, we established two novel carbon phases in purely sp2-bonded networks, termed H61-carbon and H62-carbon, using a self-assembling approach. These carbyne-connected carbon allotropes had helix chains joined by cumulative double-bond chains. We certified the new carbon allotropes to be dynamically and mechanically stable. Both of these carbon allotropes exhibited excellent mechanical properties, and they had metallic and superconductive characteristics featuring superconducting transition temperatures of 10 K (H61-carbon) and 7.4 K (H62-carbon), respectively. These results provide an important strategy for the design of novel carbon allotropes with specified properties.

6.
J Chem Phys ; 158(13): 134711, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37031159

RESUMEN

As an important phase-change material, GeTe has many high-pressure phases as well, but its phase transitions under pressure are still lack of clarity. It is challenging to identify high-pressure GeTe crystal structures owing to the phase coexistence in a wide pressure range and the reversibility of phase transitions. Hence, first-principles calculations are required to provide further information in addition to limited experimental characterizations. In this work, a new orthorhombic Cmca GeTe high-pressure phase has been predicted via the CALYPSO method as the most energetically favorable phase in the pressure range between ∼30 and ∼38.5 GPa, which would update the GeTe high-pressure phase transition sequence. The crystal structure of the Cmca phase is composed of alternate stacking puckered layers of Ge six-membered rings and Te four-membered rings along the b direction. The high density of states near the Fermi level and delocalization of electrons from the two-dimensional electron localization function indicate a strong metallic property of the Cmca phase. Electron-phonon coupling calculations indicate that the Cmca phase is superconductive below ∼4.2 K at 35 GPa. The simulated x-ray diffraction pattern of the Cmca phase implies that this phase might coexist with the Pnma-boat phase under high pressure. These results offer further understanding on the high-pressure structural evolution and physical properties in GeTe and other IV-VI semiconductors.

7.
Nat Mater ; 22(1): 42-49, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522415

RESUMEN

Traditional ceramics or metals cannot simultaneously achieve ultrahigh strength and high electrical conductivity. The elemental carbon can form a variety of allotropes with entirely different physical properties, providing versatility for tuning mechanical and electrical properties in a wide range. Here, by precisely controlling the extent of transformation of amorphous carbon into diamond within a narrow temperature-pressure range, we synthesize an in situ composite consisting of ultrafine nanodiamond homogeneously dispersed in disordered multilayer graphene with incoherent interfaces, which demonstrates a Knoop hardness of up to ~53 GPa, a compressive strength of up to ~54 GPa and an electrical conductivity of 670-1,240 S m-1 at room temperature. With atomically resolving interface structures and molecular dynamics simulations, we reveal that amorphous carbon transforms into diamond through a nucleation process via a local rearrangement of carbon atoms and diffusion-driven growth, different from the transformation of graphite into diamond. The complex bonding between the diamond-like and graphite-like components greatly improves the mechanical properties of the composite. This superhard, ultrastrong, conductive elemental carbon composite has comprehensive properties that are superior to those of the known conductive ceramics and C/C composites. The intermediate hybridization state at the interfaces also provides insights into the amorphous-to-crystalline phase transition of carbon.

8.
Adv Mater ; 35(50): e2204375, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36099908

RESUMEN

The observation of fracture behaviors in perfect and twinned B4 C crystals via in situ transmission electron microscopy (TEM) mechanical testing is reported. The crystal structure of the synthesized B4 C, composed of B11 C icosahedra connected by boron-deficient C-▫-C chains in a chemical formula of B11 C3 , is determined by state-of-the-art aberration-corrected scanning TEM. The in situ TEM observations reveal that cracking is preferentially initiated at the twin boundaries (TBs) in B4 C under both indentation and tension loading. The cracks then propagate along the TBs, thus resulting in the fracture of B4 C. These results are consistent with the theoretical calculations that show that TBs have a softening effect on B4 C with amorphous bands preferentially nucleated at the TBs. These findings elucidate the atomic arrangement and the role of planar defects in the failure of B4 C. Furthermore, they can guide the design of advanced superhard materials via planar defect control.

9.
iScience ; 25(12): 105563, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36444307

RESUMEN

Carbon is one of the most versatile atoms and fosters a wealth of carbon allotropes with superior mechanical and electronic properties. A three-dimensional covalent carbon nanotube, named CCN, with a hexagonal honeycomb-like crystalline structure is proposed theoretically. CCN consists of sp 3 bonded coaxially teamed (6,0) carbon nanotubes, and the tube walls possess intrinsic wrinkles, which trigger miraculous physical properties. The mechanical and thermal dynamic stabilities are confirmed, and molecular dynamics simulations indicate high temperature thermal stability up to 1500 K. CCN has an unusual cork-like zero Poisson's ratio along the axial direction of the nanotubes, and the axial/radial stretching or compression rarely effects the radial/axial dimensions of the nanotubes. CCN is superhard with Vickers hardness of 82.8 GPa, matching that of cubic boron nitride. Substitution B and N atoms for C atoms result in superhard CCN-B12N8 and CCN-C8N12 with quasi-zero Poisson's radio along both axial and radial directions.

10.
Nature ; 607(7919): 486-491, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794481

RESUMEN

Understanding the direct transformation from graphite to diamond has been a long-standing challenge with great scientific and practical importance. Previously proposed transformation mechanisms1-3, based on traditional experimental observations that lacked atomistic resolution, cannot account for the complex nanostructures occurring at graphite-diamond interfaces during the transformation4,5. Here we report the identification of coherent graphite-diamond interfaces, which consist of four basic structural motifs, in partially transformed graphite samples recovered from static compression, using high-angle annular dark-field scanning transmission electron microscopy. These observations provide insight into possible pathways of the transformation. Theoretical calculations confirm that transformation through these coherent interfaces is energetically favoured compared with those through other paths previously proposed1-3. The graphite-to-diamond transformation is governed by the formation of nanoscale coherent interfaces (diamond nucleation), which, under static compression, advance to consume the remaining graphite (diamond growth). These results may also shed light on transformation mechanisms of other carbon materials and boron nitride under different synthetic conditions.

11.
Nano Lett ; 22(12): 4979-4984, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35639704

RESUMEN

The traditional hardness-toughness tradeoff poses a substantial challenge for the development of superhard materials. Due to strong covalent bonds and intrinsic brittleness, the full advantage of microstructure engineering for enhanced mechanical properties requires further exploration in superhard materials. Here heterogeneous diamond-cBN composites were synthesized from a carefully prepared precursor (hBN microflakes uniformly wrapped by onion carbon nanoparticles) through phase transitions under high pressure and high temperature. The synthesized composites inherit the architecture of the precursors: cBN regions with an anisotropic profile that spans several micrometers laterally and several hundred nanometers in thickness are embedded in a nanograined diamond matrix with high-density nanotwins. A significantly high fracture toughness of 16.9 ± 0.8 MPa m1/2 is achieved, far beyond those of single-crystal diamond and cBN, without sacrificing hardness. A detailed TEM analysis revealed multiple toughening mechanisms closely related to the microstructure. This work sheds light on microstructure engineering in superhard materials for excellent mechanical properties.

12.
Natl Sci Rev ; 9(1): nwab140, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35070330

RESUMEN

Carbon is one of the most fascinating elements due to its structurally diverse allotropic forms stemming from its bonding varieties (sp, sp 2 and sp 3). Exploring new forms of carbon has been the eternal theme of scientific research. Herein, we report on amorphous (AM) carbon materials with a high fraction of sp 3 bonding recovered from compression of fullerene C60 under high pressure and high temperature, previously unexplored. Analysis of photoluminescence and absorption spectra demonstrates that they are semiconducting with a bandgap range of 1.5-2.2 eV, comparable to that of widely used AM silicon. Comprehensive mechanical tests demonstrate that synthesized AM-III carbon is the hardest and strongest AM material known to date, and can scratch diamond crystal and approach its strength. The produced AM carbon materials combine outstanding mechanical and electronic properties, and may potentially be used in photovoltaic applications that require ultrahigh strength and wear resistance.

13.
Proc Natl Acad Sci U S A ; 118(47)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34782460

RESUMEN

Mechanical properties of covalent materials can be greatly enhanced with strategy of nanostructuring. For example, the nanotwinned diamond with an isotropic microstructure of interweaved nanotwins and interlocked nanograins shows unprecedented isotropic mechanical properties. How the anisotropic microstructure would impact on the mechanical properties of diamond has not been fully investigated. Here, we report the synthesis of diamond from superaligned multiwalled carbon nanotube films under high pressure and high temperature. Structural characterization reveals preferentially oriented diamond nanotwin bundles with an average twin thickness of ca. 2.9 nm, inherited from the directional nanotubes. This diamond exhibits extreme mechanical anisotropy correlated with its microstructure (e.g., the average Knoop hardness values measured with the major axis of the indenter perpendicular and parallel to nanotwin bundles are 233 ± 8 and 129 ± 9 GPa, respectively). Molecular dynamics simulation reveals that, in the direction perpendicular to the nanotwin bundles, the dense twin boundaries significantly hinder the motion of dislocations under indentation, while such a resistance is much weaker in the direction along the nanotwin bundles. Current work verifies the hardening effect in diamond via nanostructuring. In addition, the mechanical properties can be further tuned (anisotropy) with microstructure design and modification.

14.
J Phys Chem Lett ; 12(7): 1979-1984, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33595313

RESUMEN

Here a series of sp2-sp3 BxNx+1 (x = 1, 2, 3, 4, 5, 6) structures was constructed. These structures can be viewed as diamond-like BN blocks connected by single N-N bonds. Elastic constants and phonon dispersion curves confirm that all of the proposed structures are mechanically and dynamically stable. These structures all possess metallicity originating from the conductive channels formed by sp2-hybridized N atoms and adjacent sp3-hybridized B and N atoms. These structures exhibit tunable mechanical properties with a regular change in the sp2/sp3 ratio. The theoretical Vickers hardness increases and the ductility decreases as the number of diamond-like BN blocks increases, gradually approaching those of c-BN. Moreover, the convex hull at ambient pressure and 50 GPa indicates that high pressure is beneficial in the synthesis of these B-N phases. The simulated X-ray diffraction patterns of these structures were also calculated to provide more information for further experiments.

15.
Inorg Chem ; 60(4): 2598-2603, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33497224

RESUMEN

A previous study reported an observed unidentified graphite/hexagonal boron nitride (hBN) superlattice structure in special multilayer heterojunction devices via cross-sectional transmission electron microscopy [Haigh S. J. et al., Nat. Mater. 2012, 11, 764-767]. In this letter, we designed and confirmed two possible graphite/hBN superlattice structures (AA and Ab), which were probably the structures observed by the aforementioned experiment. The formation enthalpies of both structures were negative, indicating that they could be successfully synthesized as the previous experiment reported. The results also showed that both structures possessed dynamic stability and elastic stability. Importantly, the theoretical interlayer distances of AA and Ab were 3.34 and 3.30 Å, respectively, which were consistent with the experimental value of 3.32 Å. The X-ray diffraction patterns and Raman spectra of both structures were simulated to aid in distinguishing them. This study on the atomic structure of the graphite/hBN superlattice lays a foundation for further research and application of this material.

16.
Phys Chem Chem Phys ; 22(40): 22918-22922, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32832962

RESUMEN

Ternary boron-carbon-nitrogen (B-C-N) compounds are considered to possess hardness comparable to diamond and thermal stability comparable to c-BN. Explorations for desirable B-C-N phases have been continuous. However, the nonconductive properties of most B-C-N compounds narrow the applications of these compounds. Herein, we propose a sp2-sp3 hybridized phase of t-B2C3N2, which consists of diamond-like BC blocks connected with single N-N bonds. Elastic constants and phonon dispersion curves confirm that t-B2C3N2 is mechanically and dynamically stable. The structure processes 2D metallicity in a strong 3D network. Furthermore, hardness and electron-phonon calculations reveal that t-B2C3N2 is superhard and superconductive with a superconducting critical temperature reaching 2.3 K.

17.
ACS Omega ; 5(21): 12557-12567, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32548439

RESUMEN

Graphitic carbon nitride (g-CN) has emerged as a promising metal-free photocatalyst, while the catalytic mechanism for the photoinduced redox processes is still under investigation. Interestingly, this heptazine-based polymer optically behaves as a "quasi-monomer". In this work, we explore upstream from melem (the heptazine monomer) to the triazine-based melamine and melam and present several lines of theoretical/experimental evidence where the catalytic activity of g-CN originates from the electronic structure evolution of the C-N heterocyclic cores. Periodic density functional theory calculations reveal the strikingly different electronic structures of melem from its triazine-based counterparts. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy also provide consistent results in the structural and chemical bonding variations of these three relevant compounds. Both melam and melem were found to show stable photocatalytic activities, while the photocatalytic activity of melem is about 5.4 times higher than that of melam during the degradation of dyes under UV-visible light irradiation. In contrast to melamine and melam, the frontier electronic orbitals of the heptazine unit in melem are uniformly distributed and well complementary to each other, which further determine the terminal amines as primary reduction sites. These appealing electronic features in both the heterocyclic skeleton and the terminated functional groups can be inherited by the polymeric but quasi-monomeric g-CN, leading to its pronounced photocatalytic activity.

18.
ACS Omega ; 5(9): 4620-4625, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32175508

RESUMEN

High-pressure phase transitions of AlB2-type transition-metal diborides (TMB2; TM = Zr, Sc, Ti, Nb, and Y) were systematically investigated using first-principles calculations. Upon subjecting to pressure, these TMB2 compounds underwent universal phase transitions from an AlB2-type to a new high-pressure phase tP6 structure. The analysis of the atomistic mechanism suggests that the tP6 phases result from atomic layer folds of the AlB2-type parent phases under pressure. Stability studies indicate that the tP6-structured ZrB2, ScB2, and NbB2 are stable and may be observed under high pressure and the tP6-structured TiB2 phase may be recovered at ambient pressure.

19.
ACS Omega ; 5(1): 650-654, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31956814

RESUMEN

Cubic boron nitride (cBN) exhibits superior hardness and strength as compared with other ceramics that are commonly used as abrasives and cutting tools. The recently synthesized polycrystalline cBN bulk material with ultrafine nanotwin substructures possesses a remarkable combination of high hardness, fracture toughness, and thermal stability. The twin substructure has been demonstrated to exert dislocation-blocking effect similar to grain boundary, leading to strengthening of materials. So far, the synthesis of cBN nanoparticles with ultrafine nanotwin substructures has not yet been realized. Herein, we report on the synthesis of cBN nanoparticles from onion-like boron nitride (oBN) under high pressure and high temperature. Multiple characterization methods, including X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy, revealed that the as-prepared cBN nanoparticles contained high-density nanotwin substructures. The use of the highly wrinkled oBN precursor and well-designed synthetic method were the key to obtain these unique ultrafine nanotwinned cBN nanoparticles.

20.
Nat Commun ; 10(1): 5533, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797924

RESUMEN

Diamond is the hardest natural material, but its practical strength is low and its elastic deformability extremely limited. While recent experiments have demonstrated that diamond nanoneedles can sustain exceptionally large elastic tensile strains with high tensile strengths, the size- and orientation-dependence of these properties remains unknown. Here we report maximum achievable tensile strain and strength of diamond nanoneedles with various diameters, oriented in <100>, <110> and <111> -directions, using in situ transmission electron microscopy. We show that reversible elastic deformation depends both on nanoneedle diameter and orientation. <100> -oriented nanoneedles with a diameter of 60 nm exhibit highest elastic tensile strain (13.4%) and tensile strength (125 GPa). These values are comparable with the theoretical elasticity and Griffith strength limits of diamond, respectively. Our experimental data, together with first principles simulations, indicate that maximum achievable elastic strain and strength are primarily determined by surface conditions of the nanoneedles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...