Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Reprod Toxicol ; 129: 108668, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032760

RESUMEN

Acetaminophen (APAP, also known as paracetamol) is a commonly used antipyretic and analgesic that is considered safe to use during pregnancy. However, a growing body of research indicates that gestational administration of APAP increased the risk of neurodevelopmental, reproductive and genitourinary disorders in offspring, alongside impairments in placental development. Notably, over-dosed APAP exhibits direct toxicity to endothelial cells, but there is very limited research investigating the impact of APAP on placental angiogenesis, a gap we aim to address in this study. Pregnant mice were gavaged with APAP (15, 50 and 150 mg/kg/d) from embryonic day 11.5 (E11.5) to E13.5. Administration of 150 mg/kg/d APAP leads to low birth weight (LBW) of the offspring and disordered vascular structures within the labyrinthine (Lab) layer of the placenta. This disruption is accompanied by a significant increase in Suppressor of Cytokine Signaling 3 (SOCS3) level, a negative regulator of the Janus kinase signal transducer 1 and activator of the transcription 3 (JAK1/STAT3) signaling. Meanwhile, Human umbilical vein endothelial Cells (HUVECs) with the treatment of 3 mM APAP exhibited reduced cell viability, whereas 1 mM APAP significantly affected the proliferation, migration, invasion and angiogenic capacities of HUVECs. Further, SOCS3 was up-regulated in HUVECs, accompanied by inhibition of JAK1/STAT3 pathways. Knocking-down SOCS3 in HUVECs restored the nuclear translocation of STAT3 and efficiently promoted cellular capacity of tube formation. Overall, short-term maternal administration of overdosed APAP impairs angiogenic capacities of fetal endothelial cells via SOCS3/JAK1/STAT3 pathway in the mouse placenta. This study reveals that overdose of APAP during pregnancy may adversely affect placental angiogenesis, emphasizing the importance of adhering to the safe principles of smallest effective dose for the shortest required durations.

2.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893308

RESUMEN

8-17 DNAzymes (8-17, 17E, Mg5, and 17EV1) are in vitro-selected catalytic DNA molecules that are capable of cleaving complementary RNAs. The conserved residues in their similar catalytic cores, together with the metal ions, were suggested to contribute to the catalytic reaction. Based on the contribution of the less conserved residues in the bulge loop residues (W12, A15, A15.0) and the internal stem, new catalytic cores of 8-17 DNAzymes were programmed. The internal stem CTC-GAG seems to be more favorable for the DNAzymes than CCG-GGC, while an extra W12.0 led to a significant loss of activity of DNAzymes, which is contrary to the positive effect of A15.0, by which a new active DNAzyme 17EM was derived. It conducts a faster reaction than 17E. It is most active in the presence of Pb2+, with the metal ion preference of Pb2+ >> Zn2+ > Mn2+ > Ca2+ ≈ Mg2+. In the Pb2+ and Zn2+-mediated reactions of 17EM and 17E, the same Na+- and pH dependence were also observed as what was observed for 17E and other 8-17 DNAzymes. Therefore, 17EM is another member of the 8-17 DNAzymes, and it could be applied as a potential biosensor for RNA and metal ions.


Asunto(s)
ADN Catalítico , ADN Catalítico/química , ADN Catalítico/metabolismo , Conformación de Ácido Nucleico , Catálisis , Concentración de Iones de Hidrógeno , Dominio Catalítico , Secuencia de Bases , Metales/química
3.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38763769

RESUMEN

OBJECTIVES: To investigate the effect of subacute exposure of Di (2-ethylhexyl) phthalate (DEHP) on endometrial decidualization in mice. METHODS: CD1 mice were orally administrated with 300 mg·kg-1·d-1 (low-dose group), 1000 mg·kg-1·d-1 (medium-dose group), or 3000 mg·kg-1·d-1 DEHP (1/10 LD50, high-dose group) for 28 days, respectively. The early natural pregnancy model and artificially induced decidualization model were established, and the uterine tissues were collected on D7 of natural pregnancy and D8 of artificially induced decidualization, respectively. The effects of subacute exposure to DEHP on the decidualization of mice were detected by HE staining, Masson staining, TUNEL staining, and Western blotting, respectively. A model of spontaneous abortion was constructed in mice after subacute exposure to 300 mg·kg-1·d-1 DEHP, and the effect of impaired decidualization on pregnancy was investigated by observing the pregnancy outcome on the 10th day of gestation. RESULTS: Compared with the control group, the conception rate was significantly lower in the high-dose DEHP subacute exposure group. HE staining showed that, compared with the control group, the decidual stromal cells in the low- and medium-dose exposure groups were disorganized, the nuclei of the cells were irregular, the cytoplasmic staining was uneven, and the number of polymorphonuclear cells was significantly reduced. Masson staining showed that compared with the control group, the collagen fibers in the decidua region of the DEHP low-dose group and the medium-dose group were more distributed, more abundant and more disorderly. TUNEL staining showed increased apoptosis in the decidua area compared to the control group. Western blotting showed that the expression of BMP2, a marker molecule for endometrial decidualization, was significantly reduced. The abortion rate and embryo resorption rate were significantly higher, and the number of embryos, uterine wet weight, uterine area and placenta wet weight were significantly lower in mice exposed to 300 mg·kg-1·d-1 DEHP than in control mice stimulated by mifepristone abortifacient drug. CONCLUSIONS: Subacute exposure to DEHP leads to impaired endometrial decidualization during early pregnancy and exacerbates the risk of adverse pregnant outcomes in mice.

4.
Environ Res ; 252(Pt 1): 118865, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583661

RESUMEN

Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.


Asunto(s)
Apoptosis , Benzo(a)pireno , Células de la Granulosa , FN-kappa B , Factor 2 Asociado a Receptor de TNF , Femenino , Animales , Apoptosis/efectos de los fármacos , Ratones , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , FN-kappa B/metabolismo , Embarazo , Benzo(a)pireno/toxicidad , Factor 2 Asociado a Receptor de TNF/metabolismo , Caspasa 1/metabolismo , Disruptores Endocrinos/toxicidad , Transducción de Señal/efectos de los fármacos , Humanos
5.
Toxicology ; 504: 153796, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582279

RESUMEN

As a broad-spectrum and efficient insecticide, beta-Cypermethrin (ß-CYP) poses a health risk to pregnancy. It matters the mechanisms of maternal exposure to ß-CYP for impacting reproductive health. The placenta, a transient organ pivotal for maternal-fetal communication during pregnancy, plays a crucial role in embryonic development. The effect of ß-CYP exposure on the placenta and its underlying molecular mechanisms remain obscure. The objective of this study was to investigate the effect of ß-CYP exposure on placental development and the function of trophoblast, as well as the underlying mechanisms through CD-1 mouse model (1, 10, 20 mg/kg.bw) and in vitro HTR-8/SVneo cell model (12.5, 25, 50, 100 µM). We found slower weight gain and reduced uterine wet weight in pregnant mice with maternal exposure to ß-CYP during pregnancy, as well as adverse pregnancy outcomes such as uterine bleeding and embryo resorption. The abnormal placental development in response to ß-CYP was noticed, including imbalanced placental structure and disrupted labyrinthine vascular development. Trophoblasts, pivotal in placental development and vascular remodeling, displayed abnormal differentiation under ß-CYP exposure. This aberration was characterized by thickened trophoblast layers in the labyrinthine zone, accompanied by mitochondrial and endoplasmic reticulum swelling within trophoblasts. Further researches on human chorionic trophoblast cell lines revealed that ß-CYP exposure induced apoptosis in HTR-8/SVneo cells. This induction resulted in a notable decrease in migration and invasion abilities, coupled with oxidative stress and the inhibition of the Notch signaling pathway. N-acetylcysteine (an antioxidant) partially restored the impaired Notch signaling pathway in HTR-8/SVneo cells, and mitigated cellular functional damage attributed to ß-CYP exposure. Collectively, exposure to ß-CYP induced oxidative stress and then led to inhibition of the Notch signaling pathway and dysfunction of trophoblast cells, ultimately resulted in abnormal placenta and pregnancy. These findings indicate Reactive Oxygen Species as potential intervention targets to mitigate ß-CYP toxicity. The comprehensive elucidation contributes to our understanding of ß-CYP biosafety and offers an experimental basis for preventing and managing its reproductive toxicity.


Asunto(s)
Insecticidas , Estrés Oxidativo , Piretrinas , Trofoblastos , Piretrinas/toxicidad , Femenino , Embarazo , Trofoblastos/efectos de los fármacos , Trofoblastos/patología , Trofoblastos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Ratones , Insecticidas/toxicidad , Humanos , Exposición Materna/efectos adversos , Placentación/efectos de los fármacos , Línea Celular , Placenta/efectos de los fármacos , Placenta/patología , Placenta/metabolismo , Apoptosis/efectos de los fármacos
6.
Sci Total Environ ; 925: 171790, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38508253

RESUMEN

Fenvalerate (FEN), a type II pyrethroid pesticide, finds extensive application in agriculture, graziery and public spaces for pest control, resulting in severe environmental pollution. As an environmental endocrine disruptor with estrogen-like activity, exposure to FEN exhibited adverse effects on ovarian functions. Additionally, the presence of the metabolite of FEN in women's urine shows a positive association with the risk of primary ovarian insufficiency (POI). In mammals, the primordial follicle pool established during the early life serves as a reservoir for storing all available oocytes throughout the female reproductive life. The initial size of the primordial follicle pool and the rate of its depletion affect the occurrence of POI. Nevertheless, there is very limited research about the impact of FEN exposure on primordial folliculogenesis. In this study, pregnant mice were orally administrated with 0.2, 2.0 and 20.0 mg/kg FEN from 16.5 to 18.5 days post-coitus (dpc). Ovaries exposed to FEN exhibited the presence of large germ-cell cysts that persist on 1 days post-parturition (1 dpp), followed by a significant reduction in the total number of oocytes in pups on 5 dpp. Moreover, the levels of m6A-RNA and its associated proteins METTL3 and YTHDF2 were significantly increased in the ovaries exposed to FEN. The increased YTHDF2 promoted the assembly of the cytoplasmic processing bodies (P-body) in the oocytes, accompanied with altered expression of transcripts. Additionally, when YTHDF2 was knocked-down in fetal ovary cultures, the primordial folliculogenesis disrupted by FEN exposure was effectively restored. Further, the female offspring exposed to FEN displayed ovarian dysfunctions reminiscent of POI in early adulthood, characterized by decreases in ovarian coefficient and female hormone levels. Therefore, the present study revealed that exposure to FEN during late pregnancy disrupted primordial folliculogenesis by YTHDF2-mediated P-body assembly, causing enduring adverse effects on female fertility.


Asunto(s)
Nitrilos , Reserva Ovárica , Piretrinas , Humanos , Embarazo , Animales , Femenino , Ratones , Adulto , Animales Recién Nacidos , Cuerpos de Procesamiento , Oocitos/metabolismo , Piretrinas/toxicidad , Piretrinas/metabolismo , Mamíferos/metabolismo , Metiltransferasas , Proteínas de Unión al ARN
7.
Food Chem Toxicol ; 187: 114604, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508570

RESUMEN

Adverse environmental factors during maternal gestation pose a threat to pregnancy. Environmental factors, particularly nanoparticles, can impact pregnancy by causing damage to the placenta. Compared to early gestation, foetuses in late gestation are more robustly developed and at lower risk of adverse effects from environmental factors. Delivery systems for targeted therapy during pregnancy is predominantly focused on their application in late gestation. Zeolitic imidazolate framework-8 (ZIF-8) holds great potential for targeted drug therapy. To evaluate the value of ZIF-8 in targeted treatment of disorders associated with late gestation, it is crucial to investigate the biological effects of ZIF-8 exposure during late gestation. Here, a mouse model exposed to ZIF-8 particles at different doses (5, 10, and 15 mg/kg) during late gestation was constructed. We found that ZIF-8 particles were deposited in the uterus of pregnant mice. ZIF-8 could trigger placental neutrophil aggregation and induce inflammation, which led to trophoblast pyroptosis and impair placental function, adversely affecting the foetus. Neutrophil depletion alleviated placental and foetal damage induced by ZIF-8. This study provides a novel mechanistic view of the reproductive toxicity induced by ZIF-8 and may offer clues to reduce the latent harm of adverse environmental factors to pregnancy.


Asunto(s)
Exposición Materna , Placenta , Humanos , Embarazo , Femenino , Animales , Ratones , Exposición Materna/efectos adversos , Piroptosis , Neutrófilos , Trofoblastos
8.
Free Radic Biol Med ; 212: 360-374, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38171407

RESUMEN

Evidence recently showed that pleiotropic cytokine interferon-gamma (IFN-γ) in the tumor microenvironment (TME) plays a positive role in hepatocellular carcinoma (HCC) progression through the regulation of liver cancer stem cells (LCSCs) in HCC. The present study explored the role and potential mechanism of mitochondrial programmed cell death-ligand 1 (PD-L1) and its regulation of ferroptosis in modulating the cancer stemness of LCSCs. It was shown that mimicking TME IFN-γ exposure increased the LCSCs ratio and cancer stemness phenotypes in HCC cells. IFN-γ exposure inhibited sorafenib (Sora)-induced ferroptosis by enhancing glutathione peroxidase 4 (GPX4) expression as well reactive oxygen species (ROS) and lipid peroxidation (LPO) generation in LCSCs. Furthermore, IFN-γ exposure upregulated PD-L1 expression and its mitochondrial translocation, inducing dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and correlating with glycolytic metabolism reprogramming in LCSCs. The genetic intervention of PD-L1 promoted ferroptosis-dependent anti-tumor effects of Sora, reduced glycolytic metabolism reprogramming, and inhibited cancer stemness of HCC in vitro and in vivo. Our results revealed a novel mechanism that IFN-γ exposure-induced mitochondrial translocation of PD-L1 enhanced glycolytic reprogramming to mediate the GPX4-dependent ferroptosis resistance and cancer stemness in LCSCs. This study provided new insights into the role of mitochondrial PD-L1-Drp1-GPX4 signal axis in regulating IFN-γ exposure-associated cancer stemness in LCSCs and verified that PD-L1-targeted intervention in combination with Sora might achieve promising synergistic anti-HCC effects.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Interferón gamma/genética , Interferón gamma/metabolismo , Ferroptosis/genética , Línea Celular Tumoral , Microambiente Tumoral
9.
Artículo en Inglés | MEDLINE | ID: mdl-38062739

RESUMEN

Aim: Acetaminophen (APAP) is clinically recommended as analgesic and antipyretic among pregnant women. However, accumulating laboratory evidence shows that the use of APAP during pregnancy may alter fetal development. Since fetal stage is a susceptible window for early oogenesis, we aim to assess the potential effects of maternal administration of APAP on fetal oocytes. Results: Pregnant mice at 14.5 dpc (days post-coitus) were orally administered with APAP (50 and 150mg/kg.bw/day) for 3 days; meanwhile, 14.5 dpc ovaries were collected and cultured with APAP or its metabolite N-acetyl-p-benzoquinone imine (NAPQI; 5 and 15 µM) for 3 days. It showed that APAP caused meiotic aberrations in fetal oocytes through its metabolite NAPQI, including meiotic prophase I (MPI) progression delay and homologous recombination defects. Co-treatment with nicotinamide (NAM) or nicotinamide riboside chloride (NRC), nicotinamide adenine dinucleotide (NAD+) supplements, efficiently restored the MPI arrest, whereas the addition of the inhibitor of sirtuin 7 (SIRT7) invalidated the effect of the NAD+ supplement. In addition, RNA sequencing revealed distorted transcriptomes of fetal ovaries treated with NAPQI. Furthermore, the fecundity of female offspring was affected, exhibiting delayed primordial folliculogenesis and puberty onset, reduced levels of ovarian hormones, and impaired developmental competence of MII oocytes. Innovation: These findings provide the first known demonstration that NAPQI, converted from maternal administration of APAP, disturbs meiotic process of fetal oocytes and further impairs female fecundity in adulthood. The concomitant oral dosing with NAM further supports the benefits of NAD+ supplements on oogenesis. Conclusion: Short-term administration of APAP to pregnant mouse caused meiotic aberrations in fetal oocytes by its metabolite NAPQI, whereas co-treatment with NAD+ supplement efficiently relieves the adverse effects by interacting with SIRT7.

10.
J Proteomics ; 288: 104996, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37657719

RESUMEN

Unexplained recurrent spontaneous abortion (URSA) seriously affects female reproductive health, causing a great burden to patients both physically and mentally. Endometrial decidualization plays an important role in pregnancy, and impaired decidualization is an essential cause of URSA, but the cause of the damage is still poorly understood. This study aimed to reveal the pathogenesis of URSA by analyzing the differential protein expression profiles in the decidual tissue of patients with recurrent abortion compared to those with normal pregnancy. Morphological analysis revealed abnormal decidualization of endometrial tissue in patients with URSA. Quantitative proteomics analysis showed that a total of 146 differentially expressed proteins were identified between the two groups, among which 95 proteins were downregulated and 51 proteins were upregulated. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that the protein expression profile and signaling pathways of endometrium in patients with URSA changed significantly, and cytoskeleton remodeling and morphological transformation disorders were associated with abortion induced by incomplete decidualization. Meanwhile, transcription factors analysis showed that the 3 most affected families were zf-C2H2, MYB and HMG. Therefore, our study may provide a basis for searching for potential markers of decidualization injury. SIGNIFICANCE: At present, there are still about 50% of RSA patients with unknown causes, which brings great difficulties and blindness to clinical diagnosis and treatment.The limited proteomic studies on URSA further contribute to the lack of understanding in this field. However, in this study, the focus was on proteomic profiling analysis of the human endometrium in URSA patients compared to normal women. The findings revealed that cytoskeletal remodeling disorder is a significant contributor to the failure of decidualization in URSA patients. This insight highlights the potential role of cytoskeleton-related proteins in the pathogenesis of URSA, providing valuable information for further research and potential therapeutic interventions.


Asunto(s)
Aborto Habitual , Proteómica , Embarazo , Humanos , Femenino , Aborto Habitual/genética , Aborto Habitual/patología , Endometrio , Transducción de Señal , Reproducción
11.
Environ Toxicol Pharmacol ; 102: 104239, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37541639

RESUMEN

Cetylpyridinium Chloride (CPC) is a common disinfectant with potential mitochondrial toxicity. However, the effects of CPC on female reproduction remains unclear. In the present study, pregnant mice were exposed to environmentally relevant doses of CPC for 3 days, the effects were evaluated in the female offspring. Maternal exposure to CPC caused loss of oocytes in neonatal ovaries. TEM analysis of neonatal ovaries showed CPC caused aberrant mitochondrial morphology including vacuolated and disorganized structure, reduced functional cristae. In addition, CPC decreased mitochondrial membrane potential in neonatal oocytes. Seahorse analysis showed that CPC hampered mitochondrial reserve, manifested as reduced spare respiratory capacity. Furthermore, CPC damaged mitochondrial function and impaired developmental competence of MII oocytes, suggesting a persisting impact into adulthood. In summary, this is the first known demonstration that maternal exposure to CPC caused mitochondrial disorders in neonatal ovaries and had long-term effects on fertility of the female offspring.


Asunto(s)
Cetilpiridinio , Exposición Materna , Embarazo , Humanos , Ratones , Femenino , Animales , Cetilpiridinio/farmacología , Cetilpiridinio/toxicidad , Exposición Materna/efectos adversos , Oogénesis , Oocitos , Mitocondrias
12.
Food Chem Toxicol ; 178: 113861, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37277016

RESUMEN

Female reproductive lifespan is largely determined by the size of the primordial follicle pool, which is established in early life. Dibutyl phthalate (DBP), a popular plasticiser, is a known environmental endocrine disruptor that poses a potential threat to reproductive health. However, DBP impact on early oogenesis has been rarely reported. In this study, maternal exposure to DBP in gestation disrupted germ-cell cyst breakdown and primordial follicle assembly in foetal ovary, impairing female fertility in adulthood. Subsequently, altered autophagic flux with autophagosome accumulation was observed in DBP-exposed ovaries carrying CAG-RFP-EGFP-LC3 reporter genes, whereas autophagy inhibition by 3-methyladenine attenuated the impact of DBP on primordial folliculogenesis. Moreover, DBP exposure reduced the expression of NOTCH2 intracellular domain (NICD2) and decreased interactions between NICD2 and Beclin-l. NICD2 was observed within the autophagosomes in DBP-exposed ovaries. Furthermore, NICD2 overexpression partially restored primordial folliculogenesis. Furthermore, melatonin significantly relieved oxidative stress, decreased autophagy, and restored NOTCH2 signalling, consequently reversing the effect on folliculogenesis. Therefore, this study demonstrated that gestational DBP exposure disrupts primordial folliculogenesis by inducing autophagy, which targets NOTCH2 signalling, and this impact has long-term consequences on fertility in adulthood, strengthening the potential contribution of environmental chemicals to the development of ovarian dysfunctional diseases.


Asunto(s)
Dibutil Ftalato , Folículo Ovárico , Animales , Femenino , Ratones , Autofagia , Dibutil Ftalato/toxicidad , Dibutil Ftalato/metabolismo , Ovario , Plastificantes/metabolismo , Receptor Notch2/química , Receptor Notch2/metabolismo
13.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(1): 1-12, 2023 Feb 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37283113

RESUMEN

OBJECTIVES: To explore the effect of exposure to di (2-ethyl) hexyl phthalate (DEHP) in early pregnancy on endometrial decidualization in mice and its relation with lncRNA RP24-315D19.10. METHODS: Early pregnancy mice were exposed to DEHP (1000 mg·kg-1·d-1) to construct the model. The uterus was collected on day 6 of pregnancy to detect its effect on decidualization by HE staining and immunofluorescence. A decidualization induction model of mouse endometrial stromal cells exposed to DEHP (0.1, 0.5, 2.5, 12.5, 62.5 µmol/L) was constructed. The changes of cell morphology were observed by light microscopy and phalloidin staining, and the expression of decidual reaction related molecular markers were detected by immunofluorescence, realtime RT-PCR and Western blotting. The expression of RP24-315D19.10 in decidua tissue and cells was detected by realtime RT-PCR. Cellular localization of RP24-315D19.10 was determined by lncLocator database and RNA FISH. AnnoLnc2 database was used to predict miRNAs bound to RP24-315D19.10. RESULTS: The number of embryo implantation sites, uterine weight and uterine area were significantly lower in the DEHP exposed group than those in the control group, and the expression of the decidual reaction related molecular markers matrix metalloprotein 9 and homeobox A10 in the DEHP exposure group were also significantly lower than those in the control group (all P<0.05). With the increase of DEHP concentration, the expression of dtprp in decidua cells was gradually decreased. 2.5 µmol/L DEHP exposed stromal cells failed to be fully decidualized in vitro, andphalloidin staining showed abnormal cytoskeleton morphology. The expression levels of homeobox A10, bone morphogenetic protein 2 and proliferating cell nuclear antigen in the DEHP exposure group were significantly lower than those in the control group (all P<0.05). The expression of RP24-315D19.10 in DEHP exposed decidua tissue and cells was significantly reduced (both P<0.05). RP24-315D19.10 is mainly localized in the cytoplasm and RP24-315D19.10 might bind to 45 miRNAs, among them, miR-138-5p, miR-155-5p, miR-183-5p and miR-223-3p were associated with endometrial decidualization. CONCLUSIONS: DEHP exposure in early pregnancy may impair endometrial decidualization, and the damage may be associated with the down-regulation of RP24-315D19.10.


Asunto(s)
Dietilhexil Ftalato , MicroARNs , ARN Largo no Codificante , Embarazo , Femenino , Ratones , Animales , Decidua/metabolismo , ARN Largo no Codificante/metabolismo , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , Plastificantes/toxicidad , Plastificantes/metabolismo , Proteínas Homeobox A10/metabolismo , Endometrio , MicroARNs/metabolismo , Células del Estroma/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166762, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37295480

RESUMEN

Decidualization is a critical process for successful pregnancy. Disorders in this process are tightly associated with adverse pregnancy outcomes including spontaneous abortion. However, the potential molecular mechanisms of lncRNAs underlying this process are yet to be fully elucidated. In this study, we utilized RNA sequencing (RNA-seq) to identify differentially expressed lncRNAs during endometrial decidualization with a pregnant mouse model. Based on RNA-seq analysis, weighted gene co-expression network analysis (WGCNA) was performed to construct the lncRNA-mRNA co-expression network and to identify decidualization-associated hub lncRNAs. Through comprehensive screening and validation, we identified a novel lncRNA, RP24-315D19.10 and studied its function in primary mouse endometrial stromal cells (mESCs). lncRNA RP24-315D19.10 was highly expressed during decidualization. Knockdown of RP24-315D19.10 significantly inhibited mESCs decidualization in vitro. Mechanistically, RNA pull-down and RNA immunoprecipitation assays indicated that cytoplasmic RP24-315D19.10 could bind to hnRNPA2B1, thereby upregulating hnRNPA2B1 expression. Site-directed mutagenesis followed by biolayer interferometry analysis additionally illustrated that hnRNPA2B1 protein specifically bound to the ~-142ccccc~-167 region of the RP24-315D19.10 sequence. hnRPA2B1 deficiency impairs mESCs decidualization in vitro and we found that the inhibition in decidualization caused by RP24-315D19.10 knockdown was rescued by hnRNPA2B1 overexpression. Moreover, the expression of hnRNPA2B1 in spontaneous abortion women with deficient decidualization was significantly lower than that in healthy individuals, suggesting that hnRNPA2B1 may be involved in the development and progression of spontaneous abortion caused by decidualization failure. Collectively, our study indicates RP24-315D19.10 is a critical regulator for endometrial decidualization and RP24-315D19.10-regulated hnRNPA2B1 might be a new mark of decidualization-related spontaneous abortion.


Asunto(s)
Aborto Espontáneo , ARN Largo no Codificante , Animales , Femenino , Humanos , Ratones , Embarazo , Aborto Espontáneo/genética , Aborto Espontáneo/metabolismo , Decidua/metabolismo , Endometrio/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo
15.
Molecules ; 28(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37175352

RESUMEN

Cationic polymeric materials and cell-penetrating peptides (CPPs) were often used as the delivery vectors in the evaluation of nucleic acid therapeutics. 10-23 DNAzyme is a kind of potential antisense therapeutics by catalytic cleavage of the disease-related RNAs. Here, lipofectamine 2000 and Tat peptide were evaluated for their effect on the catalytic activity of 10-23 DNAzyme, with the observed rate constant, thermal stability, CD spectra, and PAGE analysis, with a duplex DNA mimicking DNAzyme-substrate as a control. It was shown that the cationic carriers had a negative effect on the catalytic performance of the 10-23 DNAzyme. Significantly, the destabilizing effect of the cationic carriers on the duplex formation was noteworthy, as a duplex formation is an essential prerequisite in the silencing mechanisms of antisense and RNAi.


Asunto(s)
Péptidos de Penetración Celular , ADN Catalítico , ADN Catalítico/química , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/química , Lípidos , ADN , Cationes
16.
J Hazard Mater ; 455: 131540, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37167869

RESUMEN

Homologous recombination (HR) during early oogenesis repairs programmed double-strand breaks (DSBs) to ensure female fertility and offspring health. The exposure of fetal ovaries to endocrine disrupting chemicals (EDCs) can cause reproductive disorders in the adulthood. The EDC dibutyl phthalate (DBP) is widely distributed in flexible plastic products, leading to ubiquitous human exposure. Here, we report that maternal exposure to DBP caused gross aberrations in meiotic prophase I of fetal oocytes, including delayed progression, impaired DNA damage response, uncoupled localization of DMC1 and RAD51, and decreased HR. However, programmed DSBs were efficiently repaired. DBP exposure negatively regulated lysine crotonylation (Kcr) of MSH6. Similar meiotic defects were observed in fetal ovaries with targeted disruption of Msh6, and mutation of K544cr of MSH6 impaired its association with Ku70, thereby promoting non-homologous end joining (NHEJ) and inhibiting HR. Unlike mature F1 females, F2 female mice exhibited premature follicular activation, precocious puberty, and anxiety-like behaviors. Therefore, DBP can influence early meiotic events, and Kcr of MSH6 may regulate preferential induction of HR or NHEJ for DNA repair during meiosis.


Asunto(s)
Dibutil Ftalato , Meiosis , Humanos , Femenino , Ratones , Animales , Adulto , Dibutil Ftalato/toxicidad , Exposición Materna , Proteínas de Unión al ADN , Recombinación Homóloga , Reparación del ADN , Oocitos
17.
Part Fibre Toxicol ; 20(1): 14, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081566

RESUMEN

BACKGROUND: The biological effects of cerium dioxide nanoparticles (CeO2NPs), a novel material in the biomedical field, have attracted widespread attention. Our previous study confirmed that exposure to CeO2NPs during pregnancy led to abnormal trophoblast invasion during early placental development, thereby impairing placental development. The potential mechanisms may be related to low-quality decidualization triggered by CeO2NPs exposure, such as an imbalance in trophoblast invasion regulators secreted by decidual cells. However, the intermediate link mediating the "dialogue" between decidual cells and trophoblasts during this process remains unclear. As an important connection between cells, exosomes participate in the "dialogue" between endometrial cells and trophoblasts. Exosomes transfer bioactive microRNA into target cells, which can target and regulate the level of mRNA in target cells. RESULTS: Here, we constructed a mice primary uterine stromal cell-induced decidualization model in vitro, and detected the effect of CeO2NPs exposure on the expression of decidual-derived exosomal miRNAs by high-throughput sequencing. Bioinformatics analysis and dual-luciferase reporter assays were performed to identify target genes of the screened key miRNAs in regulating trophoblast invasion. Finally, the role of the screened miRNAs and their target genes in regulating trophoblast (HTR-8/SVneo cells) invasion was confirmed. The results showed that CeO2NPs exposure inhibited trophoblast invasion by promoting miR-99a-5p expression in decidual-derived exosomes, and Ppp2r5a is a potential target gene for miR-99a-5p to inhibit trophoblast invasion. CONCLUSIONS: This study revealed the molecular mechanism by which CeO2NPs exposure inhibits trophoblast invasion from the perspective of decidual derived exosomal miRNAs. These results will provide an experimental basis for screening potential therapeutic targets for the negative biological effects of CeO2NPs exposure and new ideas for studying the mechanism of damage to trophoblast cells at the decidual-foetal interface by harmful environmental or occupational factors.


Asunto(s)
MicroARNs , Trofoblastos , Animales , Ratones , Embarazo , Femenino , Trofoblastos/metabolismo , Placenta/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Movimiento Celular , Proliferación Celular
18.
BMC Geriatr ; 23(1): 143, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918769

RESUMEN

BACKGROUND: Trauma in the elderly is gradually growing more prevalent as the aging population increases over time. The purpose of this study is to assess hospitalization costs of the elderly trauma population and analyze the association between those costs and the features of the elderly trauma population. METHODS: In a retrospective analysis, data on trauma patients over 65 who were admitted to the hospital for the first time due to trauma between January 2017 and March 2022 was collected from a tertiary comprehensive hospital in Baotou. We calculated and analyzed the hospitalization cost components. According to various therapeutic approaches, trauma patients were divided into two subgroups: non-surgical patients (1320 cases) and surgical patients (387 cases). Quantile regression was used to evaluate the relationship between trauma patients and hospitalization costs. RESULTS: This study comprised 1707 trauma patients in total. Mean total hospitalization costs per patient were ¥20,741. Patients with transportation accidents incurred the highest expenditures among those with external causes of trauma, with a mean hospitalization cost of ¥24,918, followed by patients with falls at ¥19,809 on average. Hospitalization costs were dominated by medicine costs (¥7,182 per capita). According to the quantile regression results, all trauma patients' hospitalization costs were considerably increased by length of stay, surgery, the injury severity score (16-24), multimorbidity, thorax injury, and blood transfusion. For non-surgical patients, length of stay, multimorbidity, and the injury severity score (16-24) were all substantially linked to higher hospitalization costs. For surgical patients, length of stay, injury severity score (16-24), and hip and thigh injuries were significantly associated with greater hospitalization costs. CONCLUSIONS: Using quantile regression to identify factors associated with hospitalization costs could be helpful for addressing the burden of injury in the elderly population. Policymakers may find these findings to be insightful in lowering hospitalization costs related to injury in the elderly population.


Asunto(s)
Costos de Hospital , Hospitalización , Heridas y Lesiones , Hospitalización/economía , Hospitalización/estadística & datos numéricos , Heridas y Lesiones/economía , Heridas y Lesiones/epidemiología , Heridas y Lesiones/cirugía , Heridas y Lesiones/terapia , China/epidemiología , Humanos , Masculino , Femenino , Anciano , Análisis de Regresión , Costos de Hospital/estadística & datos numéricos
19.
Biochim Biophys Acta Mol Basis Dis ; 1869(4): 166659, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36740105

RESUMEN

Pregnancy complications are more likely to occur in obese women because of defective decidualization. However, the specific mechanism of glycolysis in decidual modulation associated with obesity remains unknown. Therefore, we explored the role of glycolysis in the endometrium of obese pregnant mice during decidualization. C57BL/6J mice were fed a high-fat diet (HFD) to induce obesity. All obesity related parameters were significantly higher in the HFD mice than control. Furthermore, the HFD mice had fewer implantation sites, a smaller decidual area growth, and decreased decidualization marker protein expression than control. The HFD mice also had significantly decreased lactate production and glycolytic enzyme expression. To confirm the functional role of glycolysis during the decidual period in obese pregnant mice, we extracted endometrial stromal cells (ESCs) and treated them with oleic acid (OA) and palmitic acid (PA) to mimic a high-fat environment. Decidualization and glycolysis were significantly restricted in the OA-and PA-treated groups. Moreover, we administered a glycolytic inhibitor, 2-DG, and an agonist, pioglitazone. 2-DG treatment considerably decreased the cells' glycolysis and decidualization. However, pioglitazone treatment improved glycolysis and alleviated defective decidualization. In conclusion, obesity-induced endometrial glycolysis modifications and key glycolytic enzyme downregulation during early pregnancy might cause abnormal decidualization, leading to an unsustainable pregnancy.


Asunto(s)
Decidua , Endometrio , Embarazo , Femenino , Animales , Ratones , Decidua/metabolismo , Pioglitazona/metabolismo , Ratones Endogámicos C57BL , Endometrio/metabolismo , Glucólisis , Obesidad/complicaciones , Obesidad/metabolismo
20.
Ecotoxicol Environ Saf ; 251: 114531, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36641866

RESUMEN

The environmental pollutant Benzo(a)pyrene (BaP) has an adverse effect on the reproductive performance of mammals. We previously showed that BaP treatment during early pregnancy damages endometrial morphology and impairs embryo implantation. Endometrial decidualization at the implantation site (IS) after embryo implantation is crucial for pregnancy maintenance and placental development. The balance between proliferation and differentiation in endometrial stromal cells (ESCs) is a crucial event of decidualization, which is regulated by the cell cycle. Here, we report that abnormal decidualization caused by BaP is associated with cell cycle disturbance of stromal cells. The mice in the treatment group were gavaged with 0.2 mg/kg/day BaP from day 1-8 of pregnancy, while those in control were gavaged with corn oil in parallel. BaP damaged the decidualization of ESCs and reduced the number of polyploid cells. Meanwhile, BaP up-regulated the expression of Ki67 and PCNA, affecting the differentiation of stromal cells. The cell cycle progression analysis during decidualization in vivo and in vitro showed that BaP induced polyploid cells deficiency with enhanced expressions of CyclinA(E)/CDK2, CyclinD/CDK4 and CyclinB/CDK1, which promote the transformation of cells from G1 to S phase and simultaneously activate the G2/M phase. The above results indicated that BaP exposure accelerates cell cycle progression, promotes ESC proliferation, inhibits differentiation, and impedes proper decidualization and polyploidy development. Thus, the imbalance of ESC proliferation and differentiation would be an important mechanism for BaP-induced defective decidualization.


Asunto(s)
Benzo(a)pireno , Decidua , Embarazo , Ratones , Femenino , Animales , Decidua/metabolismo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Placenta , Diferenciación Celular , Proliferación Celular , Células del Estroma/metabolismo , Poliploidía , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA