Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(21): 9297-9303, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37161768

RESUMEN

The number of excellent 2D materials is finite for nano optoelectric devices including transistors, diodes, sensors, and so forth, thus the modulation of 2D materials is important to improve the performance of the current eligible 2D materials, and even to transform unqualified 2D materials into eligible 2D materials. Here we develop a fine laser doping strategy based on highly controllable laser direct writing, and investigate its effectivity and practicability by doping multilayer molybdenum ditelluride (MoTe2). Power-gradient laser doping and patterned laser doping, for the first time, are presented for designable and fine doping of 2D materials. The laser-induced polar transition of MoTe2 indicates good controllability of the method for the carrier concentration distribution in MoTe2. Multiple devices with finely tuned energy band structures are demonstrated by means of power-gradient laser doping and patterned laser doping, further illustrating the design capability of a precise energy band in 2D materials.

2.
J Acoust Soc Am ; 151(4): 2290, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35461493

RESUMEN

In recent years, micro-acoustic devices, such as surface acoustic wave (SAW) devices, and bulk acoustic wave (BAW) devices have been widely used in the areas of Internet of Things and mobile communication. With the increasing demand of information transmission speed, working frequencies of micro-acoustic devices are becoming much higher. To meet the emerging demand, Lamb wave devices with characteristics that are fit for high working frequency come into being. However, Lamb wave devices have more complicated vibrating modes than SAW and BAW devices. Methods used for SAW and BAW devices are no longer suitable for the mode extraction of Lamb wave devices. To solve this difficulty, this paper proposed a method based on machine learning with convolutional neural network to achieve automatic identification. The great ability to handle large amount of images makes it a good option for vibrating mode recognition and extraction. With a pre-trained model, we are able to identify and extract the first two anti-symmetric and symmetric modes of Lamb waves in varisized plate structures. After the successful use of this method in Lamb wave modes automatic extraction, it can be extended to all micro-acoustic devices and all other wave types. The proposed method will further promote the application of the Lamb wave devices.

3.
Micromachines (Basel) ; 12(8)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34442616

RESUMEN

Phononic crystals with phononic band gaps varying in different parameters represent a promising structure for sensing. Equipping microchannel sensors with phononic crystals has also become a great area of interest in research. For building a microchannels system compatible with conventional micro-electro-mechanical system (MEMS) technology, SU-8 is an optimal choice, because it has been used in both fields for a long time. However, its mechanical properties are greatly affected by temperature, as this affects the phononic bands of the phononic crystal. With this in mind, the viscous dissipation in microchannels of flowing liquid is required for application. To solve the problem of viscous dissipation, this article proposes a simulation model that considers the heat transfer between fluid and microchannel and analyzes the frequency domain properties of phononic crystals. The results show that when the channel length reaches 1 mm, the frequency shift caused by viscous dissipation will significantly affect detecting accuracy. Furthermore, the temperature gradient also introduces some weak passbands into the band gap. This article proves that viscous dissipation does influence the band gap of phononic crystal chemical sensors and highlights the necessity of temperature compensation in calibration. This work may promote the application of microchannel chemical sensors in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...