Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(18): 22602-22615, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37097807

RESUMEN

Constructing porous structures in electromagnetic interference (EMI) shielding materials is a common strategy to decrease the secondary pollution caused by the reflection of electromagnetic waves (EMWs). However, the lack of direct analysis methods makes it difficult to fully understand the effect of porous structures on EMI, hindering EMI composites' development. Furthermore, while deep learning techniques, such as deep convolutional neural networks (DCNNs), have significantly impacted material science, their lack of interpretability limits their applications to property predictions and defect detection tasks. Until recently, advanced visualization techniques provided an approach to reveal the relevant information behind DCNNs' decisions. Inspired by it, a visual approach for porous EMI nanocomposite mechanism studies is proposed. This work combines DCNN visualization with experiments to investigate EMI porous nanocomposites. First, a rapid and straightforward salt-leaked cold-pressing powder sintering method is employed to prepare high-EMI CNTs/PVDF composites with various porosities and filler loadings. Notably, the solid sample with 30 wt % loading maintains an ultrahigh shielding effectiveness of 105 dB. The influence of porosity on the shielding mechanism is discussed macroscopically based on the prepared samples. To determine the shielding mechanism, a modified deep residual network (ResNet) is trained on a dataset of scanning electron microscopy (SEM) images of the samples. The Eigen-CAM visualization of the modified ResNet intuitively shows that the amount and depth of the pores impact the shielding mechanisms and that shallow pore structures contribute less to EMW absorption. This work is instructive for material mechanism studies. Besides, the visualization has the potential as a porous-like structure marking tool.

2.
Front Nutr ; 9: 899780, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782949

RESUMEN

Background: While the relationship between blood pressure and blood lead has been studied more extensively, the effect of high-density lipoprotein (HDL) concentration on this relationship remains uncertain. Therefore, this study aimed to determine the effect of HDL concentration on the relationship between blood lead and blood pressure. Methods: The research used cross-sectional data from the 2005 to 2014 National Health and Nutrition Examination Survey (NHANES), which included 16,451 participants aged 20-60 years. Multivariable linear regression was used to evaluate the correlation among blood lead, systolic blood pressure (SBP), and diastolic blood pressure (DBP). HDL concentration was determined by low HDL concentration (≤ 49 mg/dl) and high HDL concentration (>49 mg/dl) stratified. The effect of HDL concentration was assessed by an interaction test between blood lead and SBP in multivariable linear regression. Results: In this cross-sectional research, we identified a positive correlation between blood lead and SBP, but not DBP. The relationship between blood lead and SBP was different in the group with low and high HDL concentrations (ß: 0.21 95% Cl:-0.05-0.46 vs. ß:0.47 95% Cl: 0.15-0.79). In addition, high HDL significantly altered the positive correlation between blood lead and SBP (P-value of interaction < 0.001). Conclusion: The study suggests an interaction between HDL and blood lead in elevating SBP, which may have important clinical implications.

3.
Neurosci Lett ; 678: 1-7, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29705538

RESUMEN

Previous studies have shown that peripheral ionotropic glutamate receptors are involved in the increase in sensitivity of a cutaneous branch of spinal dorsal ramus (CBDR) through antidromic electrical stimulation (ADES) of another CBDR in the adjacent segment. CBDR in the thoracic segments run parallel to each other and no synaptic contact at the periphery is reported. The present study investigated whether the increased sensitivity of peripheral sensory nerves via ADES of a CBDR induced Fos expression changes in the adjacent segments of the spinal cord. Fos expression increased in the T8 - T12 segments of the spinal cord evoked by ADES of the T10 CBDR in rats. The increased Fos expression in the T11 and T12, but not T8 - T10 spinal cord segments, was significantly blocked by local application of either N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) or non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the receptive field of T11 CBDR. The results suggest that endogenous glutamate released by ADES of sensory nerve may bind to peripheral ionotropic glutamate receptors and activate adjacent sensory nerve endings to increase the sensitivity of the spinal cord. These data reveal the potential mechanisms of neuron activation in the spinal cord evoked by peripheral sensitization.


Asunto(s)
Ganglios Espinales/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Médula Espinal/metabolismo , Vías Aferentes/metabolismo , Animales , Estimulación Eléctrica , Masculino , Ratas Sprague-Dawley , Piel/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...