Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Lipids Health Dis ; 23(1): 217, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014376

RESUMEN

BACKGROUND: Cancer and sarcopenia are both closely related to lipid metabolism, but the relationship between lipid metabolism and patients with cancer and sarcopenia has not been thoroughly studied. The non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) is a reliable measure of lipid metabolism. The purpose of this study was to determine the possible relationship between the NHHR and sarcopenia in individuals with cancer. METHODS: Data from the National Health and Nutrition Examination Survey (NHANES) database for individuals with cancer, with and without sarcopenia was analyzed using weighted multiple regression equations, weighted regression cubic spline (RCS) analysis, and weighted subgroup analysis. RESULTS: In total, 1,602 individuals with cancer were included, of whom 17.1% had sarcopenia. In Adjusted Model 2, the occurrence of sarcopenia was found to be significantly associated with a higher NHHR in cancer (95% confidence interval [CI]:1.01-1.39, P = 0.036). Individuals with high a NHHR had a 2.09-fold higher risk of developing sarcopenia in comparison to those with a low NHHR (95% CI:1.12-3.92, P = 0.022). RCS analysis further identified a U-shaped non-linear relationship between females with cancer and the muscle index. Subgroup analysis indicated that sex was a significant stratifying factor, whereas age, race, marital status, smoking and drinking habits, and history of cardiovascular disease, arthritis, hypertension, and diabetes had no significant impact. CONCLUSION: From the perspective of lipid metabolism, the NHHR may serve as an indicator for monitoring and preventing the occurrence of sarcopenia in individuals with cancer, particularly for females with cancer who appear to have greater sensitivity.


Asunto(s)
HDL-Colesterol , Neoplasias , Sarcopenia , Humanos , Sarcopenia/sangre , Sarcopenia/epidemiología , Neoplasias/sangre , Neoplasias/complicaciones , Neoplasias/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Estudios Transversales , HDL-Colesterol/sangre , Anciano , Encuestas Nutricionales , Adulto , Factores de Riesgo , Colesterol/sangre
2.
Microb Pathog ; : 106791, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019121

RESUMEN

BACKGROUND: The Pseudorabies Virus (PRV) leading to pseudorabies and causes huge economic losses in pig industry. The development of novel PRV variations has diminished the efficacy of traditional vaccinations, and there is yet no medication that can stop the spread of PRV infection. Therefore, PRV eradication is challenging. Oregano essential oil, the plant-based ingredient for medication feed have been shown to has strong anti-herpesvirus activity, but no anti-PRV function has been reported. RESULTS: The current study assessed the anti-pseudorabies virus (PRV) activity of oregano essential oil and explored its mechanisms and most effective components against PRV. Our in vivo findings demonstrated that oregano essential oil could decrease the PRV load in tissues, mitigate tissue lesions, and enhance the survival rate of mice. The potential antiviral mechanism involves augmenting humoral and cellular immune responses in PRV-infected mice. To further investigate the most effective components of oregano essential oil against PRV, an in vitro study was conducted, revealing that oregano essential oil and its main constituents, carvacrol and thymol, all diminished PRV intracellular proliferation in vitro. Carvacrol exhibited the most potent anti-PRV effect, serving as the primary contributor to oregano essential oil's anti-PRV activity. The mechanisms underlying carvacrol's anti-PRV properties include the upregulation of cytokines TNF-α, IFN-ß, IFN-γ, IL-12, and the inhibition of PRV-induced apoptosis in BHK-21 cells. CONCLUSIONS: Our study provides an effective drug for the prevention and control of PRV infection.

3.
Nanoscale ; 16(18): 9075-9083, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38639490

RESUMEN

Achieving control over symmetry breaking of completely achiral components in the aqueous phase is a significant challenge in supramolecular chemistry. Herein, we demonstrate that it is possible to construct chiral nanoassemblies by introducing metal ions (Zn2+, Fe3+, Al3+, Cu2+, and Ca2+) into completely achiral azobenzene amphiphiles with key structural factors in the pure aqueous phase. It is found that the coordination interactions, π-π stacking, hydrophilic and hydrophobic interactions, hydrogen bonding, and electrostatic interactions are crucial to the metal-ion-induced symmetry breaking of completely achiral building blocks. This study may provide an intriguing model system for constructing chiral assemblies based on completely achiral molecules.

4.
Int J Biol Macromol ; 268(Pt 1): 131773, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657930

RESUMEN

The antigenicity of ß-lactoglobulin (ß-LG) can be influenced by pH values and reduced by epigallocatechin-3-gallate (EGCG). However, a detailed mechanism concerning EGCG decreasing the antigenicity of ß-LG at different pH levels lacks clarity. Here, we explore the inhibition mechanism of EGCG on the antigenicity of ß-LG at pH 6.2, 7.4 and 8.2 using enzyme-linked immunosorbent assay, multi-spectroscopy, mass spectrometry and molecular simulations. The results of Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) elucidate that the noncovalent binding of EGCG with ß-LG induces variations in the secondary structure and conformations of ß-LG. Moreover, EGCG inhibits the antigenicity of ß-LG the most at pH 7.4 (98.30 %), followed by pH 6.2 (73.18 %) and pH 8.2 (36.24 %). The inhibitory difference is attributed to the disparity in the number of epitopes involved in the interacting regions of EGCG and ß-LG. Our findings suggest that manipulating pH conditions may enhance the effectiveness of antigenic inhibitors, with the potential for further application in the food industry.


Asunto(s)
Catequina , Lactoglobulinas , Lactoglobulinas/química , Lactoglobulinas/inmunología , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Dicroismo Circular , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Simulación del Acoplamiento Molecular , Antígenos/inmunología , Antígenos/química
5.
Phys Rev Lett ; 132(15): 150401, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38683009

RESUMEN

Quantum many-body scars are nonthermal excited eigenstates of nonintegrable Hamiltonians, which could support coherent revival dynamics from special initial states when scars form an equally spaced tower in the energy spectrum. For open quantum systems, engineering many-body scarred dynamics by a controlled coupling to the environment remains largely unexplored. Here, we provide a general framework to exactly embed quantum many-body scars into the decoherence-free subspaces of Lindblad master equations. The dissipative scarred dynamics manifest persistent periodic oscillations for generic initial states, and can be practically utilized to prepare scar states with potential quantum metrology applications. We construct the Liouvillian dissipators with the local projectors that annihilate the whole scar towers, and utilize the Hamiltonian part to rotate the undesired states out of the null space of dissipators. We demonstrate our protocol through several typical models hosting many-body scar towers and propose an experimental scheme to observe the dissipative scarred dynamics based on digital quantum simulations and resetting ancilla qubits.

6.
Adv Sci (Weinh) ; 11(22): e2400258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526197

RESUMEN

Due to their amorphous-like ultralow lattice thermal conductivity both below and above the superionic phase transition, crystalline Cu- and Ag-based superionic argyrodites have garnered widespread attention as promising thermoelectric materials. However, despite their intriguing properties, quantifying their lattice thermal conductivities and a comprehensive understanding of the microscopic dynamics that drive these extraordinary properties are still lacking. Here, an integrated experimental and theoretical approach is adopted to reveal the presence of Cu-dominated low-energy optical phonons in the Cu-based argyrodite Cu7PS6. These phonons yield strong acoustic-optical phonon scattering through avoided crossing, enabling ultralow lattice thermal conductivity. The Unified Theory of thermal transport is employed to analyze heat conduction and successfully reproduce the experimental amorphous-like ultralow lattice thermal conductivities, ranging from 0.43 to 0.58 W m-1 K-1, in the temperature range of 100-400 K. The study reveals that the amorphous-like ultralow thermal conductivity of Cu7PS6 stems from a significantly dominant wave-like conduction mechanism. Moreover, the simulations elucidate the wave-like thermal transport mainly results from the contribution of Cu-associated low-energy overlapping optical phonons. This study highlights the crucial role of low-energy and overlapping optical modes in facilitating amorphous-like ultralow thermal transport, providing a thorough understanding of the underlying complex dynamics of argyrodites.

7.
J Alzheimers Dis ; 98(2): 373-385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38461506

RESUMEN

Background: Emerging evidence suggests the potential relationship between vitamin D deficiency and risk of cognitive impairment or dementia. To what extent the excess risk of dementia conferred by vitamin D deficiency is less clear. Objective: We summarized the current evidence from several aspects and further quantified these associations. Methods: We collected relevant prospective cohort studies by searching PubMed, Embase and Cochrane up to July 2023. The pooled relative risks (RR) were evaluated by random-effects models. Dose-response analyses were conducted by the method of two-stage generalized least squares regression. Results: Of 9,267 identified literatures, 23 were eligible for inclusion in the meta-analyses, among which 9 and 4 literatures were included in the dose-response analyses for the risk of dementia and Alzheimer's disease (AD). Vitamin D deficiency exhibited a 1.42 times risk for dementia (95% confidence interval (CI) = 1.21-1.65) and a 1.57-fold excess risk for AD (95% CI = 1.15-2.14). And vitamin D deficiency was associated with 34% elevated risk with cognitive impairment (95% CI = 1.19-1.52). Additionally, vitamin D was non-linearly related to the risk of dementia (pnonlinearity = 0.0000) and AD (pnonlinearity = 0.0042). The approximate 77.5-100 nmol/L 25-hydroxyvitamin D [25(OH)D] was optimal for reducing dementia risk. And the AD risk seemed to be decreased when the 25(OH)D level >40.1 nmol/L. Conclusions: Vitamin D deficiency was a risk factor for dementia, AD, and cognitive impairment. The nonlinear relationships may further provide the optimum dose of 25(OH)D for dementia prevention.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Deficiencia de Vitamina D , Humanos , Estudios Prospectivos , Vitamina D/uso terapéutico , Enfermedad de Alzheimer/complicaciones , Disfunción Cognitiva/complicaciones , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/epidemiología , Vitaminas/uso terapéutico , Factores de Riesgo
8.
Huan Jing Ke Xue ; 45(3): 1821-1829, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38471893

RESUMEN

To clarify the impact of the structure and function of soil microbial communities in the stage of abandoned farmland, three different stages of land abandoned in desert oasis areas were selected as the research objects. We used metagenomic sequencing technology to research soil microbial community structure and functional diversity characteristics of different stages of abandoned farmland. The results showed that there were significant differences in the relative abundance of the dominant phyla Actinobacteria, Proteobacteria, and Gemmatimonadetes in the soil of the three stages of returning farmland. Compared with that in the early stage of abandoned farmland, the later stage of abandoned farmland restoration increased the gene proportion involved in Quorum sensing, porphyrin and chlorophyll metabolism, pantothenate and CoA biosynthesis, and styrene degradation, and there was a significant difference in relative abundance (P<0.05), which indicated that different stages of abandoned farmland had changed the functional potential of the nutrient cycle and energy metabolism in soil microbial communities. The RDA results showed that EC, AK, and TN had a significant impact on the functional composition of soil microbes, and soil EC had the greatest impact on microbial functional composition. The results showed that different stages of abandoned farmland had a significant impact on the soil microbial community structure and functional composition. In the ecological restoration of abandoned farmland in Minqin Oasis, the sensitivity of microbial community structure and functional composition to soil restoration at different stages should be considered using comprehensive relevant indicators.


Asunto(s)
Microbiota , Suelo , Suelo/química , Granjas , Microbiología del Suelo , Bacterias
9.
ACS Appl Mater Interfaces ; 16(12): 15362-15371, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38487844

RESUMEN

Nanofibers based on high-performance polymers are much highlighted in recent studies toward advanced lithium-ion batteries. Herein, we demonstrate one scalable poly(ethylene oxide) (PEO)-assisted solution blow spinning strategy for the preparation of heterocyclic aramid (HA) nanofibers of poly(p-phenylene-benzimidazole-terephthalamide). The incorporation of PEO is essential to improve the spinnability of the HA solution achieved directly through the low-temperature-solution copolymerization process. Additionally, the flexible PEO with a strong H-bonding affinity is also utilized as the molecular zipper to adjust the pore size of the nanofiber membrane during the post-treatment process. The obtained membrane combines the good wettability of PEO to the liquid electrolytes, with outstanding mechanical strength, modulus, toughness, and environmental resistance of HA. The nonwoven separator membranes with a porosity of 83.6% exhibited excellent comprehensive performance, which could be seen not only on the high tensile strength (68.2 MPa), modulus (3.0 GPa), and toughness but also on the high thermal stability (Td > 405 °C) and flame retardancy, as well as the high electrolyte uptake (302.4%). The ion conductivity of the porous separators reached 0.83 mS/cm, with the bulk resistance dropping to 1/4 of the reference polypropylene separator. In the assembly of the Li/LiFePO4 half battery, the HA separators displayed improved discharge specific capacity and high retention in both rate capability and cycling tests, providing the potential industrial preparation for advanced lithium-ion batteries.

10.
Biomater Adv ; 159: 213835, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531259

RESUMEN

Additive manufacturing (AM) technology has paved the way for manufacturing personalised stents. However, there is a notable gap in comprehensive microstructure analyses and in vitro evaluations of the AM CoCr stents using advanced methodologies. To address this gap, this study focuses on investigating the microstructure and in vitro performance of personalised CoCr stents manufactured through micro-laser powder bed fusion (µ-LPBF). The evaluation process begins with the measurements of dimensions and surface roughness, followed by in-depth microstructural analyses. To improve surface roughness and reduce excessive strut size, the µ-LPBF stents undergo electrochemical polishing. Importantly, in vitro stent deployments are carried out in artificial arteries manufactured based on actual patients' data. Compared to the commercial MULTI-LINK VISION CoCr stent, the µ-LPBF personalised stents have rough surface finish (average roughness: 1.55 µm for µ-LPBF vs. 1.09 µm for commercial) and compromised grain microstructures (elongated for µ-LPBF vs. equiaxed for commercial). However, the personalised stents demonstrate better performances in in vitro tests. Notably, compared to the commercial stent in the two studied cases, they deliver larger lumen gains (up to 11.24 %) and reduced recoils (up to 4 times). This study validates the merit of the lesion-specific designs and the feasibility of using AM technology for stent fabrication.


Asunto(s)
Arterias , Stents , Humanos , Lechos , Comercio , Grano Comestible
11.
EMBO Mol Med ; 16(4): 945-965, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38413838

RESUMEN

Physiological regulation of transgene expression is a major challenge in gene therapy. Onasemnogene abeparvovec (Zolgensma®) is an approved adeno-associated virus (AAV) vector gene therapy for infants with spinal muscular atrophy (SMA), however, adverse events have been observed in both animals and patients following treatment. The construct contains a native human survival motor neuron 1 (hSMN1) transgene driven by a strong, cytomegalovirus enhancer/chicken ß-actin (CMVen/CB) promoter providing high, ubiquitous tissue expression of SMN. We developed a second-generation AAV9 gene therapy expressing a codon-optimized hSMN1 transgene driven by a promoter derived from the native hSMN1 gene. This vector restored SMN expression close to physiological levels in the central nervous system and major systemic organs of a severe SMA mouse model. In a head-to-head comparison between the second-generation vector and a benchmark vector, identical in design to onasemnogene abeparvovec, the 2nd-generation vector showed better safety and improved efficacy in SMA mouse model.


Asunto(s)
Atrofia Muscular Espinal , Lactante , Humanos , Ratones , Animales , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Neuronas Motoras/metabolismo , Terapia Genética , Transgenes , Regiones Promotoras Genéticas , Modelos Animales de Enfermedad
12.
Angew Chem Int Ed Engl ; 63(7): e202317176, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38168476

RESUMEN

High-energy Li metal batteries (LMBs) consisting of Li metal anodes and high-voltage cathodes are promising candidates of the next generation energy-storage systems owing to their ultrahigh energy density. However, it is still challenging to develop high-voltage nonflammable electrolytes with superior anode and cathode compatibility for LMBs. Here, we propose an active diluent-anion synergy strategy to achieve outstanding compatibility with Li metal anodes and high-voltage cathodes by using 1,2-difluorobenzene (DFB) with high activity for yielding LiF as an active diluent to regulate nonflammable dimethylacetamide (DMAC)-based localized high concentration electrolyte (LHCE-DFB). DFB and bis(fluorosulfonyl)imide (FSI- ) anion cooperate to construct robust LiF-rich solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI), which effectively stabilize DMAC from intrinsic reactions with Li metal anode and enhance the interfacial stability of the Li metal anodes and LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) cathodes. LHCE-DFB enables ultrahigh Coulombic efficiency (98.7 %), dendrite-free, extremely stable and long-term cycling of Li metal anodes in Li || Cu cells and Li || Li cells. The fabricated NCM811 || Li cells with LHCE-DFB display remarkably enhanced long-term cycling stability and excellent rate capability. This work provides a promising active diluent-anion synergy strategy for designing high-voltage electrolytes for high-energy batteries.

15.
Hepatol Int ; 18(2): 582-594, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37823937

RESUMEN

BACKGROUND AND AIMS: T cells are master effectors of anti-tumor immunity in cancer. Recent studies suggest that altered lipid metabolism imposed by the tumor microenvironment constrains anti-tumor immunity. However, the tumor-associated lipid species changes that dampen T cell ability to control tumor progression are not fully understood. Here, we plan to clarify the influences of distinctly altered lipid components in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) on T-cell function, aiming to seek lipid metabolic targets for improving T cell anti-tumor effects. METHODS: Tumor tissues and non-tumor liver from HCC patients were collected for RNA-sequencing, lipid profiling and T cell characterizing, followed by correlation analysis. Additionally, the effects of significantly changed lipid components on anti-tumor potential of T cells were tested by in vitro cell experiments and/or in vivo tumor inoculated model. RESULTS: Altered lipid metabolism coincides with impaired T cell response in HBV-related HCC. Characteristic lipid composition, significantly marked by accumulation of long-chain acylcarnitines (LCACs) and reduction of lysophosphatidylcholines (LPCs), are found in the tumor tissue. Notably, LCACs accumulated are associated with T cells exhaustion and deficient functionality, while LPCs correlate to anti-tumor effects of T cells. In particular, supplement of LPCs, including LPC (20:0) and LPC (22:0), directly promote the activation and IFN-γ secretion of T cells in vitro, and suppress tumor growth in vivo. CONCLUSIONS: Our study highlights the distinctly changed lipid components closely related to T cell dysregulation in HCC, and suggests a promising strategy by decreasing LCACs and increasing LPCs for anti-tumor immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Linfocitos T , Inmunoterapia , Lípidos , Microambiente Tumoral
16.
Environ Technol ; : 1-14, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37997956

RESUMEN

In this research, we employed a synergistic three-dimensional (3D)-electrode technology in combination with a photocatalytic method to effectively treat wastewater containing chlorine derived from sulfonated phenolic resin (SMP). To modulate the band gap of single ZnO through semiconductor compounding, we successfully synthesized a ZnO/pyrolusite composite particle electrode on the surface of a pyrolusite particle electrode via a hydrothermal method. By incorporating MnO2 into pyrolusite, the ZnO band gap was modified, leading to a reduction in bandwidth of approximately 1.21 eV compared to pristine ZnO. Consequently, the light absorption range of the material was significantly broadened. Through the synergistic effect of photocatalysis, we achieved an impressive 96.45% removal rate of chemical oxygen demand (COD) in SMP wastewater, which effectively enhanced the photocatalytic performance of the material. Furthermore, our quenching experimental study confirmed the involvement of active chlorine species (ACl: Cl2, HClO, and ClO-), OH, h+, and O2- in the degradation process of SMP within the photocatalytic system constructed by the ZnO/pyrolusite composite particle electrode. The relative contributions were ranked as follows: ACl > h+ > ·OH > ·O2-.

17.
Nat Commun ; 14(1): 7075, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925509

RESUMEN

Biosynthesis drives the cell volume increase during T cell activation. However, the contribution of cell volume regulation in TCR signaling during T lymphoblast formation and its underlying mechanisms remain unclear. Here we show that cell volume regulation is required for optimal T cell activation. Inhibition of VRACs (volume-regulated anion channels) and deletion of leucine-rich repeat-containing protein 8A (LRRC8A) channel components impair T cell activation and function, particularly under weak TCR stimulation. Additionally, LRRC8A has distinct influences on mRNA transcriptional profiles, indicating the prominent effects of cell volume regulation for T cell functions. Moreover, cell volume regulation via LRRC8A controls T cell-mediated antiviral immunity and shapes the TCR repertoire in the thymus. Mechanistically, LRRC8A governs stringent cell volume increase via regulated volume decrease (RVD) during T cell blast formation to keep the TCR signaling molecules at an adequate density. Together, our results show a further layer of T cell activation regulation that LRRC8A functions as a cell volume controlling "valve" to facilitate T cell activation.


Asunto(s)
Transducción de Señal , Linfocitos T , Tamaño de la Célula , Linfocitos T/metabolismo , Aniones/metabolismo , Receptores de Antígenos de Linfocitos T
18.
ACS Sens ; 8(11): 4264-4271, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37997656

RESUMEN

Chiral recognition of amino acid plays a significant role in pharmaceutical, medical, and food science. This study describes a chiral sensing system of ß-cyclodextrin (ß-CD)-coated sulfur quantum dots (CD-SQDs) for the selective fluorescence recognition of tryptophan (Trp) enantiomers. CD-SQDs were prepared by a facile assembly fission method and could selectively recognize L-Trp by the different binding ability between L/D-Trp and ß-CD. The inclusion of L-Trp and the stereoselective catalysis of CD-SQDs enzyme mimics cause the increased fluorescence intensity of CD-SQDs, which has a linear response ranging from 10 to 500 nM and the detection limit as 2.3 nM. CD-SQDs also show great selectivity for L-Trp from the commercial compound amino acid injection. The study could provide an effective method for the chiral recognition of amino acid enantiomers based on the catalytic activity of nanoenzymes.


Asunto(s)
Puntos Cuánticos , beta-Ciclodextrinas , Triptófano , Puntos Cuánticos/química , beta-Ciclodextrinas/química , Estereoisomerismo
19.
Molecules ; 28(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005214

RESUMEN

Distiller's grains (DGs) are solid mixtures that remain after the production of alcoholic beverages. A large amount of DGs is produced each year during the brewing process. Currently, they are mostly used as a feedstock or substrate in the feed industry. However, the lack of a comprehensive understanding of the chemical composition of DGs is a major constraint on their further development and application for high-value-added usages. Some studies were published on the bioactive constituents of DGs in several different types of journals. Data were therefore collated to provide a comprehensive overview of these natural products. DGs are rich in phenols, phytosterols, and fatty acids, in addition to general lipid and protein constituents. These compounds and their related extracts possess diverse biological activities, including antioxidant, anti-inflammatory, and anti-hyperglycaemic effects. We hope that this review will provide research incentives for the further development and utilisation of DGs to develop high-value-added products.


Asunto(s)
Bebidas Alcohólicas , Proteínas , Antioxidantes/farmacología , Grano Comestible , Estructuras de las Plantas , Alimentación Animal
20.
Environ Res ; 239(Pt 1): 117226, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37788760

RESUMEN

Thermal hydrolysis pretreatment (THP) of sludge can form the refractory brown melanoidins due to the occurrence of the Maillard reaction, which adversely involves the subsequent sludge anaerobic digestion (AD) process. However, details of the generation pattern of melanoidins and how they affect the sludge dewaterability remain largely unknown. This work aims to determine an approach to characterize and quantify the melanoidins created by THP of sludge. On this basis, the effect of melanoidins on sludge dewatering performance was revealed by adding synthetic melanoidins to the mixed sludge. Experimental results showed that three-dimensional fluorescence-region integration (3DEEM-FRI) could effectively distinguish melanoidins from other organic substances and achieve semi-quantitative characterization in sludge. The melanoidins significantly deteriorated the sludge dewaterability, and the lowest solids content of the filter cake (TS) was only 17.78% at the addition of 480 mg (g TS)-1, which was a drop of about 20% compared to the control group. The mechanism investigations indicated that the internal structure of sludge becoming particularly complicated and the opportunities for molecules to collide with each other enlarged because of the contribution of melanoidins, resulting in the increment of the sludge apparent viscosity and consistency coefficient (k), a decline of the flow behavior index (n) and a weakening of flowability. Melanoidins could capture massive water molecules and carry negative charges with the decrease of sludge particle size and zeta potential value, which enhanced the electrostatic repulsion between sludge particles and abated the flocculation ability, thus further aggravating the sludge dewatering performance.


Asunto(s)
Bioensayo , Aguas del Alcantarillado , Hidrólisis , Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...