Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Pathol ; 25(4): e13452, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619823

RESUMEN

Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene-insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild-type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1-silenced RNA-interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis-related gene GmPR1. The GmEIL1-regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1-GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.


Asunto(s)
Fabaceae , Phytophthora , Factores de Transcripción/genética , Glycine max/genética , Etilenos , Plantas Modificadas Genéticamente
2.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673832

RESUMEN

Phytophthora root rot is a devastating disease of soybean caused by Phytophthora sojae. However, the resistance mechanism is not yet clear. Our previous studies have shown that GmAP2 enhances sensitivity to P. sojae in soybean, and GmMYB78 is downregulated in the transcriptome analysis of GmAP2-overexpressing transgenic hairy roots. Here, GmMYB78 was significantly induced by P. sojae in susceptible soybean, and the overexpressing of GmMYB78 enhanced sensitivity to the pathogen, while silencing GmMYB78 enhances resistance to P. sojae, indicating that GmMYB78 is a negative regulator of P. sojae. Moreover, the jasmonic acid (JA) content and JA synthesis gene GmAOS1 was highly upregulated in GmMYB78-silencing roots and highly downregulated in overexpressing ones, suggesting that GmMYB78 could respond to P. sojae through the JA signaling pathway. Furthermore, the expression of several pathogenesis-related genes was significantly lower in GmMYB78-overexpressing roots and higher in GmMYB78-silencing ones. Additionally, we screened and identified the upstream regulator GmbHLH122 and downstream target gene GmbZIP25 of GmMYB78. GmbHLH122 was highly induced by P. sojae and could inhibit GmMYB78 expression in resistant soybean, and GmMYB78 was highly expressed to activate downstream target gene GmbZIP25 transcription in susceptible soybean. In conclusion, our data reveal that GmMYB78 triggers soybean sensitivity to P. sojae by inhibiting the JA signaling pathway and the expression of pathogenesis-related genes or through the effects of the GmbHLH122-GmMYB78-GmbZIP25 cascade pathway.


Asunto(s)
Ciclopentanos , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Glycine max , Oxilipinas , Phytophthora , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Glycine max/genética , Glycine max/microbiología , Glycine max/parasitología , Glycine max/metabolismo , Phytophthora/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo
3.
J Transl Med ; 21(1): 831, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980457

RESUMEN

BACKGROUND: Microbiota alterations are linked with gastric cancer (GC). However, the relationship between the oral microbiota (especially oral fungi) and GC is not known. In this study, we aimed to apply 2b-RAD sequencing for Microbiome (2b-RAD-M) to characterize the oral microbiota in patients with GC. METHODS: We performed 2b-RAD-M analysis on the saliva and tongue coating of GC patients and healthy controls. We carried out diversity, relative abundance, and composition analyses of saliva and tongue coating bacteria and fungi in the two groups. In addition, indicator analysis, the Gini index, and the mean decrease accuracy were used to identify oral fungal indicators of GC. RESULTS: In this study, fungal imbalance in the saliva and tongue coating was observed in the GC group. At the species level, enriched Malassezia globosa (M. globosa) and decreased Saccharomyces cerevisiae (S. cerevisiae) were observed in saliva and tongue coating samples of the GC group. Random forest analysis indicated that M. globosa in saliva and tongue coating samples could serve as biomarkers to diagnose GC. The Gini index and mean decreases in accuracy for M. globosa in saliva and tongue coating samples were the largest. In addition, M. globosa in saliva and tongue coating samples classified GC from the control with areas under the receiver operating curve (AUCs) of 0.976 and 0.846, respectively. Further ecological analysis revealed correlations between oral bacteria and fungi. CONCLUSION: For the first time, our data suggested that changes in oral fungi between GC patients and controls may help deepen our understanding of the complex spectrum of the different microbiotas involved in GC development. Although the cohort size was small, this study is the first to use 2b-RAD-M to reveal that oral M. globosa can be a fungal biomarker for detecting GC.


Asunto(s)
Microbiota , Neoplasias Gástricas , Humanos , Lengua/microbiología , Saccharomyces cerevisiae , Bacterias , Saliva
4.
Aging (Albany NY) ; 15(14): 7146-7160, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480570

RESUMEN

Hepatocellular carcinoma (HCC) is a malignancy with a very high mortality rate. Because of its high heterogeneity, there is an urgent need to find biomarkers that accurately predict prognosis. Epithelial-mesenchymal transition (EMT) is closely associated with frequent recurrence and high mortality of HCC. Therefore, it is necessary to comprehensively analyze the prognostic value and immunological properties of EMT gene in HCC. In our study, we performed bioinformatics analysis of the TCGA and ICGC liver cancer cohorts and identified the module genes of immune-associated EMTs (iEMT) by Weighted Gene Co-Expression Network Analysis (WGCNA). Further we used machine learning (support vector machines-recursive feature elimination and Lasso) to identify three central iEMT genes (ARMC9, ADAM15 and STC2) and construct iEMT_score. Subsequently, in the training and validation cohorts, it was demonstrated that the overall survival (OS) of patients in the high iEMT_score group was worse than that of patients in the low iEMT_score group. Based on this, we have constructed a nomogram that is easy for clinicians to use. In addition, our study explored differences in pathway enrichment, immunological properties, and sensitivity to common chemotherapy and targeted drugs in different subgroups of iEMT_score. Finally, we showed through in vitro experiments that knockdown of ARMC9 could significantly inhibit the proliferation, migration and invasion of HCC cells BEL7402. Taken together, our findings suggest that iEMT_score is an excellent biomarker for predicting prognosis and provide some new insights for personalized treatment of HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias Hepáticas/genética , Pronóstico , Aprendizaje Automático , Microambiente Tumoral/genética , Proteínas de la Membrana , Proteínas ADAM
5.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37046998

RESUMEN

Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdemann is a soil-borne disease severely affecting soybean production worldwide. Losses caused by P. sojae can be controlled by both major genes and quantitative trait locus. Here, we tested 112 short-season soybean cultivars from Northeast China for resistance to P. sojae. A total of 58 germplasms were resistant to 7-11 P. sojae strains. Among these, Mengdou 28 and Kejiao 10-262 may harbor either Rps3a or multiple Rps genes conferring resistance to P. sojae. The remaining 110 germplasms produced 91 reaction types and may contain new resistance genes or gene combinations. Partial resistance evaluation using the inoculum layer method revealed that 34 soybean germplasms had high partial resistance, with a mean disease index lower than 30. Combining the results of resistance and partial resistance analyses, we identified 35 excellent germplasm resources as potential elite materials for resistance and tolerance in future breeding programs. In addition, we compared the radicle inoculation method with the inoculum layer method to screen for partial resistance to P. sojae. Our results demonstrate that the radicle inoculation method could potentially replace the inoculum layer method to identify partial resistance against P. sojae, and further verification with larger samples is required in the future.


Asunto(s)
Resistencia a la Enfermedad , Phytophthora , Resistencia a la Enfermedad/genética , Glycine max/genética , Estaciones del Año , Enfermedades de las Plantas/genética , Fitomejoramiento , Genotipo
6.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614246

RESUMEN

Phytophthora root rot is a destructive soybean disease worldwide, which is caused by the oomycete pathogen Phytophthora sojae (P. sojae). Wall-associated protein kinase (WAK) genes, a family of the receptor-like protein kinase (RLK) genes, play important roles in the plant signaling pathways that regulate stress responses and pathogen resistance. In our study, we found a putative Glycine max wall-associated protein kinase, GmWAK1, which we identified by soybean GmLHP1 RNA-sequencing. The expression of GmWAK1 was significantly increased by P. sojae and salicylic acid (SA). Overexpression of GmWAK1 in soybean significantly improved resistance to P. sojae, and the levels of phenylalanine ammonia-lyase (PAL), SA, and SA-biosynthesis-related genes were markedly higher than in the wild-type (WT) soybean. The activities of enzymatic superoxide dismutase (SOD) and peroxidase (POD) antioxidants in GmWAK1-overexpressing (OE) plants were significantly higher than those in in WT plants treated with P. sojae; reactive oxygen species (ROS) and hydrogen peroxide (H2O2) accumulation was considerably lower in GmWAK1-OE after P. sojae infection. GmWAK1 interacted with annexin-like protein RJ, GmANNRJ4, which improved resistance to P. sojae and increased intracellular free-calcium accumulation. In GmANNRJ4-OE transgenic soybean, the calmodulin-dependent kinase gene GmMPK6 and several pathogenesis-related (PR) genes were constitutively activated. Collectively, these results indicated that GmWAK1 interacts with GmANNRJ4, and GmWAK1 plays a positive role in soybean resistance to P. sojae via a process that might be dependent on SA and involved in alleviating damage caused by oxidative stress.


Asunto(s)
Glycine max , Phytophthora , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Phytophthora/fisiología , Proteínas Quinasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Plantas Modificadas Genéticamente/genética , Proteínas de Soja/genética , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
7.
Front Genet ; 13: 969476, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186454

RESUMEN

Background: RAR-related orphan receptor C (RORC) plays an important role in autoimmune responses and inflammation. However, its function in cancer immunity is still unclear. Its potential value in cancer immunotherapy (CIT) needs to be further studied. Methods: Expression and clinical data for 33 cancers were obtained from UCSC-Xena. The correlation between RORC expression and clinical parameters was analyzed using the limma software package to assess the prognostic value of RORC. Timer2.0 and DriverDBv3 were used to analyze the RORC mutation and methylation profiles. RORC-associated signaling pathways were identified by GSEA. The correlations of RORC expression with tumor microenvironment factors were further assessed, including immune cell infiltration (obtained by CIBERSORT) and immunomodulators (in pancancer datasets from the Tumor-Immune System Interactions and Drug Bank [TISIDB] database). In addition, the correlations of RORC with four CIT biomarkers (tumor mutational burden, microsatellite instability, programmed death ligand-1, and mismatch repair) were explored. Furthermore, three CIT cohorts (GSE67501, GSE168204, and IMvigor210) from the Gene Expression Omnibus database and a previously published study were used to determine the association between RORC expression and CIT response. Results: RORC was differentially expressed in many tumor tissues relative to normal tissues (20/33). In a small number of cancers, RORC expression was correlated with age (7/33), sex (4/33), and tumor stage (9/33). Furthermore, RORC expression showed prognostic value in many cancers, especially in kidney renal clear cell carcinoma (KIRC), brain lower grade glioma (LGG), and mesothelioma (MESO). The mutation rate of RORC in most cancer types was low, while RORC was hypermethylated or hypomethylated in multiple cancers. RORC was associated with a variety of biological processes and signal transduction pathways in various cancers. Furthermore, RORC was strongly correlated with immune cell infiltration, immunomodulators, and CIT biomarkers. However, no significant association was found between RORC and CIT response in the three CIT cohorts. Conclusion Our findings revealed the potential immunotherapeutic value of RORC for various cancers and provides preliminary evidence for the application of RORC in CIT.

8.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897735

RESUMEN

Ethylene response factors (ERFs) are involved in biotic and abiotic stress; however, the drought resistance mechanisms of many ERFs in soybeans have not been resolved. Previously, we proved that GmERF113 enhances resistance to the pathogen Phytophthora sojae in soybean. Here, we determined that GmERF113 is induced by 20% PEG-6000. Compared to the wild-type plants, soybean plants overexpressing GmERF113 (GmERF113-OE) displayed increased drought tolerance which was characterized by milder leaf wilting, less water loss from detached leaves, smaller stomatal aperture, lower Malondialdehyde (MDA) content, increased proline accumulation, and higher Superoxide dismutase (SOD) and Peroxidase (POD) activities under drought stress, whereas plants with GmERF113 silenced through RNA interference were the opposite. Chromatin immunoprecipitation and dual effector-reporter assays showed that GmERF113 binds to the GCC-box in the GmPR10-1 promoter, activating GmPR10-1 expression directly. Overexpressing GmPR10-1 improved drought resistance in the composite soybean plants with transgenic hairy roots. RNA-seq analysis revealed that GmERF113 downregulates abscisic acid 8'-hydroxylase 3 (GmABA8'-OH 3) and upregulates various drought-related genes. Overexpressing GmERF113 and GmPR10-1 increased the abscisic acid (ABA) content and reduced the expression of GmABA8'-OH3 in transgenic soybean plants and hairy roots, respectively. These results reveal that the GmERF113-GmPR10-1 pathway improves drought resistance and affects the ABA content in soybean, providing a theoretical basis for the molecular breeding of drought-tolerant soybean.


Asunto(s)
Sequías , Glycine max , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Glycine max/metabolismo , Estrés Fisiológico/genética
9.
J Exp Bot ; 72(22): 7891-7908, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34338731

RESUMEN

Phytophthora root and stem rot in soybean (Glycine max) is a destructive disease worldwide, and hence improving crop resistance to the causal pathogen, P. sojae, is a major target for breeders. However, it remains largely unclear how the pathogen regulates the various affected signaling pathways in the host, which consist of complex networks including key transcription factors and their targets. We have previously demonstrated that GmBTB/POZ enhances soybean resistance to P. sojae and the associated defense response. Here, we demonstrate that GmBTB/POZ interacts with the transcription factor GmAP2 and promotes its ubiquitination. GmAP2-RNAi transgenic soybean hairy roots exhibited enhanced resistance to P. sojae, whereas roots overexpressing GmAP2 showed hypersensitivity. GmWRKY33 was identified as a target of GmAP2, which represses its expression by directly binding to the promoter. GmWRKY33 acts as a positive regulator in the response of soybean to P. sojae. Overexpression of GmBTB/POZ released the GmAP2-regulated suppression of GmWRKY33 in hairy roots overexpressing GmAP2 and increased their resistance to P. sojae. Taken together, our results indicate that GmBTB/POZ-GmAP2 modulation of the P. sojae resistance response forms a novel regulatory mechanism, which putatively regulates the downstream target gene GmWRKY33 in soybean.


Asunto(s)
Dominio BTB-POZ , Phytophthora , Resistencia a la Enfermedad/genética , Humanos , Enfermedades de las Plantas/genética , Proteínas Represoras , Glycine max/genética , Factores de Transcripción/genética , Ubiquitinación
10.
Front Plant Sci ; 10: 996, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428116

RESUMEN

Phytophthora root and stem rot, a destructive disease of soybean [Glycine max (L.) Merr.], is caused by the oomycete Phytophthora sojae. However, how the disease resistance mechanisms of soybean respond to P. sojae infection remains unclear. Previously, we showed that GmWRKY31, which interacts with a sucrose non-fermenting-1(SNF1)-related protein kinase (SnRK), enhances resistance to P. sojae in soybean. Here, we report that the membrane-localized SnRK GmSnRK1.1 is involved in the soybean host response to P. sojae. The overexpression of GmSnRK1.1 (GmSnRK1.1-OE) increased soybean resistance to P. sojae, and the RNA interference (RNAi)-mediated silencing of GmSnRK1.1 (GmSnRK1.1-R) reduced resistance to P. sojae. Moreover, the activities and transcript levels of the antioxidant enzymes superoxide dismutase and peroxidase were markedly higher in the GmSnRK1.1-OE transgenic soybean plants than in the wild type (WT), but were reduced in the GmSnRK1.1-R plants. Several isoflavonoid phytoalexins related genes GmPAL, GmIFR, Gm4CL and GmCHS were significantly higher in "Suinong 10" and GmSnRK1.1-OE lines than these in "Dongnong 50," and were significantly lower in GmSnRK1.1-R lines. In addition, the accumulation of salicylic acid (SA) and the expression level of the SA biosynthesis-related gene were significantly higher in the GmSnRK1.1-OE plants than in the WT and GmSnRK1.1-R plants, moreover, SA biosynthesis inhibitor treated GmSnRK1.1-R lines plants displayed clearly increased pathogen biomass compared with H2O-treated plants after 24 h post-inoculation. These results showed that GmSnRK1.1 positively regulates soybean resistance to P. sojae, potentially functioning via effects on the expression of SA-related genes and increased accumulation of SA.

11.
Water Sci Technol ; 72(7): 1217-25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26398038

RESUMEN

Graphene oxide/polyamidoamines dendrimers (GO/PAMAMs) composites were synthesized via modifying GO with 2.0 G PAMAM. The adsorption behavior of the GO/PAMAMs for acid Bordeaux B (ABB) was studied and the effects of media pH, adsorption time and initial ABB concentration on adsorption capacity of the adsorbent were investigated. The optimum pH value of the adsorption of ABB onto GO/PAMAMs was 2.5. The maximum adsorption capacity increased from 325.78 to 520.83 mg/g with the increase in temperature from 298 to 328 K. The equilibrium data followed the Langmuir isotherm model better than the Freundlich model. The kinetic study illustrated that the adsorption of ABB onto GO/PAMAMs fit the pseudo-second-order model. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.


Asunto(s)
Compuestos Azo/aislamiento & purificación , Dendrímeros/química , Grafito/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Óxidos , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...