Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 572, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880914

RESUMEN

BACKGROUND: Accurately identifying the risk level of drug combinations is of great significance in investigating the mechanisms of combination medication and adverse reactions. Most existing methods can only predict whether there is an interaction between two drugs, but cannot directly determine their accurate risk level. METHODS: In this study, we propose a multi-class drug combination risk prediction model named AERGCN-DDI, utilizing a relational graph convolutional network with a multi-head attention mechanism. Drug-drug interaction events with varying risk levels are modeled as a heterogeneous information graph. Attribute features of drug nodes and links are learned based on compound chemical structure information. Finally, the AERGCN-DDI model is proposed to predict drug combination risk level based on heterogenous graph neural network and multi-head attention modules. RESULTS: To evaluate the effectiveness of the proposed method, five-fold cross-validation and ablation study were conducted. Furthermore, we compared its predictive performance with baseline models and other state-of-the-art methods on two benchmark datasets. Empirical studies demonstrated the superior performances of AERGCN-DDI. CONCLUSIONS: AERGCN-DDI emerges as a valuable tool for predicting the risk levels of drug combinations, thereby aiding in clinical medication decision-making, mitigating severe drug side effects, and enhancing patient clinical prognosis.


Asunto(s)
Redes Neurales de la Computación , Humanos , Interacciones Farmacológicas , Combinación de Medicamentos , Medición de Riesgo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Reproducibilidad de los Resultados , Gráficos por Computador
2.
J Org Chem ; 88(11): 6671-6681, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37220021

RESUMEN

Sulfoxides are ubiquitous in both naturally and synthetically bioactive molecules. We report herein a redox-neutral and mild approach for radical sulfinylation of redox-active esters via dual photoredox and copper catalysis, furnishing a series of functionalized sulfoxides. The reaction could accommodate a range of tertiary, secondary, and primary carboxylic acids, as well as exhibit wide functional group compatibility. The chemistry features a high degree of practicality, is scalable, and allows late-stage modification of bioactive pharmaceuticals.

3.
Org Lett ; 23(21): 8338-8342, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34632768

RESUMEN

We herein report a selective and catalytic C(sp3)-H functionalization approach to access amines bearing organo-sulfonyl and organo-thiol groups. This reaction proceeds through a cascade process of N-radical formation, alkyl radical formation via 1,5-HAT, and C-S bond formation, thereby offering a series of functionalized amines. This method could enable primary, secondary, and tertiary C(sp3)-H sulfonylation and thiolation and also exhibits good functional group tolerance.

4.
J Lipid Res ; 62: 100066, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33711324

RESUMEN

Endothelial-to-mesenchymal transition (EndMT), the process by which an endothelial cell (EC) undergoes a series of molecular events that result in a mesenchymal cell phenotype, plays an important role in atherosclerosis. 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), derived from the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine, is a proinflammatory lipid found in atherosclerotic lesions. Whether POVPC promotes EndMT and how simvastatin influences POVPC-mediated EndMT remains unclear. Here, we treated human umbilical vein ECs with POVPC, simvastatin, or both, and determined their effect on EC viability, morphology, tube formation, proliferation, and generation of NO and superoxide anion (O2•-). Expression of specific endothelial and mesenchymal markers was detected by immunofluorescence and immunoblotting. POVPC did not affect EC viability but altered cellular morphology from cobblestone-like ECs to a spindle-like mesenchymal cell morphology. POVPC increased O2- generation and expression of alpha-smooth muscle actin, vimentin, Snail-1, Twist-1, transforming growth factor-beta (TGF-ß), TGF-ß receptor II, p-Smad2/3, and Smad2/3. POVPC also decreased NO production and expression of CD31 and endothelial NO synthase. Simvastatin inhibited POVPC-mediated effects on cellular morphology, production of O2•- and NO, and expression of specific endothelial and mesenchymal markers. These data demonstrate that POVPC induces EndMT by increasing oxidative stress, which stimulates TGF-ß/Smad signaling, leading to Snail-1 and Twist-1 activation. Simvastatin inhibited POVPC-induced EndMT by decreasing oxidative stress, suppressing TGF-ß/Smad signaling, and inactivating Snail-1 and Twist-1. Our findings reveal a novel mechanism of atherosclerosis that can be inhibited by simvastatin.


Asunto(s)
Fosforilcolina
5.
Molecules ; 23(4)2018 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-29587394

RESUMEN

In this study, a novel series of 4-(2-(alkylthio)benzo[d]oxazol-5-yl)-2,4-dihydro-3H-1,2,4-triazol-3-ones (4a-m) was designed and synthesized. The anticonvulsant activities of these compounds were evaluated by using the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (scPTZ) seizure models in mice. The neurotoxicity of these compounds was evaluated using the rotarod neurotoxicity test. The majority of compounds showed anti-MES activities at 100 or 300 mg/kg. Compound 4g was considered to be the most promising, based on its potency against MES- and PTZ-induced seizures with ED50 values of 23.7 and 18.9 mg/kg, respectively. The TD50 value of 4g was 284.0 mg/kg, which resulted in a higher protective index (PI = TD50/ED50) value than that of carbamazepine and valproate. In an ELISA test, compound 4g significantly increased the γ-aminobutyric acid (GABA) content in mouse brain. In addition, pretreatment with thiosemicarbazide (an inhibitor of the GABA synthesizing enzyme) significantly decreased the activity of 4g in the MES model, which suggests that the mechanism through which compound 4g elicits its anticonvulsive action is at least in part through increasing the GABA level in the brain.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/síntesis química , Convulsiones/tratamiento farmacológico , Triazoles/administración & dosificación , Triazoles/síntesis química , Animales , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Electrochoque/efectos adversos , Ratones , Estructura Molecular , Pentilenotetrazol/efectos adversos , Convulsiones/etiología , Convulsiones/metabolismo , Relación Estructura-Actividad , Triazoles/química , Triazoles/farmacología , Regulación hacia Arriba , Ácido gamma-Aminobutírico/metabolismo
6.
J Mol Cell Cardiol ; 112: 40-48, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28870504

RESUMEN

Endothelial dysfunction is an early stage of atherosclerosis. We recently have shown that 25-hydroxycholesterol found in atherosclerotic lesions could impair endothelial function and vasodilation by uncoupling and inhibiting endothelial nitric oxide synthase (eNOS). 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), the oxidation product of oxidized low-density lipoprotein, is another proinflammatory lipid and has also been found in atherosclerotic lesions. However, whether POVPC promotes atherosclerosis like 25-hydroxycholesterol remains unclear. The purpose of this study was to explore the effects of POVPC on endothelial function and vasodilation. Human umbilical vein endothelial cells (HUVECs) were incubated with POVPC. Endothelial cell proliferation, migration and tube formation were measured. Nitric oxide (NO) production and superoxide anion generation (O2-) were determined. The expression and phosphorylation of endothelial nitric oxide synthase (eNOS), AKT, PKC-ßII and P70S6K as well as the association of eNOS and heat shock protein 90 (HSP90) were detected by immunoblotting and immunoprecipitation. Endothelial cell apoptosis was monitored by TUNEL staining. The expression of Bcl-2, Bax, and Cleaved Caspase 3 were detected by immunoblotting. Finally, aortic ring from C57BL6 mice were isolated and treated with POVPC and the endothelium-dependent vasodilation was evaluated. POVPC significantly inhibited HUVECs proliferation, migration, tube formation, decreased NO production but increased O2- generation. POVPC inhibited the phosphorylation of Akt and eNOS at Ser1177, increased activation of PKC-ßII, P70S6K and the phosphorylation of eNOS at Thr495, reduced the association of HSP90 with eNOS. Meanwhile, POVPC induced endothelial cell apoptosis by inhibiting Bcl-2 expression, increasing Bax and cleaved caspase-3 expressions as well as caspase-3 activity and impaired endothelium-dependent vasodilation. These data demonstrated that POVPC impaired endothelial function by uncoupling and inhibiting eNOS as well as by inducing endothelial cell apoptosis. Therefore, POVPC may play an important role in the development of atherosclerosis and may be considered as a potential therapeutic target for atherosclerosis.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Éteres Fosfolípidos/farmacología , Vasodilatación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Óxido Nítrico/metabolismo , Oxidación-Reducción , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Quinasa C beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA