Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(6): 9227-9236, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571161

RESUMEN

Ultraviolet (UV) photodetector plays an important role in military, civilian and people's daily life, and is an indispensable part of spectral detection. However, photodetectors target at the UVB region (280-320 nm) are rarely reported, and the devices detected by medium-wave UV light generally have problems such as low detection rate, low sensitivity, and poor stability, which are difficult to meet the market application needs. Herein, Cs-Cu-I films with mixed-phase have been prepared by vacuum thermal evaporation. By adjusting the proportion of evaporation sources (CsI and CuI), the optical bandgaps of mixed-phase Cs-Cu-I films can be tuned between 3.7 eV and 4.1 eV. This absorption cut-off edge is exactly at both ends of the UVB band, which indicating its potential application in the field of UVB detection. Finally, the photodetectors based on Cs-Cu-I/n-Si heterojunction are fabricated. The photodetector shows good spectral selectivity for UVB band, and has a photoresponsivity of 22 mA/W, a specific detectivity of 1.83*1011 Jones, an EQE over 8.7% and an on/off ratio above 20.

2.
ACS Nano ; 18(17): 11375-11388, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629444

RESUMEN

P2-NaxMnO2 has garnered significant attention due to its favorable Na+ conductivity and structural stability for large-scale energy storage fields. However, achieving a balance between high energy density and extended cycling stability remains a challenge due to the Jahn-Teller distortion of Mn3+ and anionic activity above 4.1 V. Herein, we propose a one-step in situ MgF2 strategy to synthesize a P2-Na0.76Ni0.225Mg0.025Mn0.75O1.95F0.05 cathode with improved Na-storage performance and decent water/air stability. By partially substituting cost-effective Mg for Ni and incorporating extra F for O, the optimized material demonstrates both enhanced capacity and structure stability via promoting Ni2+/Ni4+ and oxygen redox activity. It delivers a high capacity of 132.9 mA h g-1 with an elevated working potential of ≈3.48 V and maintains ≈83.0% capacity retention after 150 cycles at 100 mA g-1 within 2-4.3 V, compared to the 114.9 mA h g-1 capacity and 3.32 V discharging potential of the undoped Na0.76Ni0.25Mn0.75O2. While increasing the charging voltage to 4.5 V, 133.1 mA h g-1 capacity and 3.55 V discharging potential (vs Na/Na+) were achieved with 72.8% capacity retention after 100 cycles, far beyond that of the pristine sample (123.7 mA h g-1, 3.45 V, and 43.8%@100 cycles). Moreover, exceptional low-temperature cycling stability is achieved, with 95.0% after 150 cycles. Finally, the Na-storage mechanism of samples employing various doping strategies was investigated using in situ EIS, in situ XRD, and ex situ XPS techniques.

3.
Digit Health ; 9: 20552076231160323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346080

RESUMEN

Background and objective: Polycystic ovary syndrome is one of the most common types of endocrine and metabolic diseases in women of reproductive age that needs to be screened early and assessed non-invasively. The objective of the current study was to develop prediction models for polycystic ovary syndrome based on data of tongue and pulse using machine learning techniques. Methods: A dataset of 285 polycystic ovary syndrome patients and 201 healthy women were investigated to identify the significant tongue and pulse parameters for predicting polycystic ovary syndrome. In this study, feature selection was performed using least absolute shrinkage and selection operator regression. Several machine learning algorithms (multilayer perceptron classifier, eXtreme gradient boosting classifier, and support vector machine) were used to construct the classification models to predict the presence of polycystic ovary syndrome. Results: TB-L, TB-a, TB-b, TC-L, TC-a, h3, and h4/h1 in tongue and pulse parameters were statistically associated with polycystic ovary syndrome presence. Among the several machine learning techniques, the support vector machine model was optimal for the comprehensive evaluation of this dataset and deduced the area under the receiver operating characteristic curve, DeLong test, calibration curve, and decision curve analysis. Conclusion: The machine learning model with tongue and pulse factors can predict the existence of polycystic ovary syndrome precisely.

4.
Opt Express ; 30(16): 29749-29759, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299142

RESUMEN

With vacuum thermal evaporation, the CuI film was deposited on quartz and n-GaN substrates, and the morphology, crystalline structure and optical properties of the CuI films were investigated. According to the XRD results, the CuI film preferentially grew along [111] crystal orientation on the GaN epilayer. With Au and Ni/Au ohmic contact electrodes fabricated on CuI and n-GaN, a prototype p-CuI/n-GaN heterojunction UV photodetector strong UV spectral selectivity was created. At 0 V and 360 nm front illumination (0.32 mW/cm2), the heterojunction photodetector displayed outstanding self-powered detection performance with the responsivity (R), specific detectivity (D*), and on/off ratio up to 75.5 mA/W, 1.27×1012 Jones, and ∼2320, respectively. Meanwhile, the p-CuI/n-GaN heterojunction photodetector had excellent atmosphere stability.

5.
Front Pharmacol ; 13: 978600, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052124

RESUMEN

Tetrandrine (Tet), derived from the traditional Chinese herb Fangji, is a class of natural alkaloids with the structure of bisbenzylisoquinoline, which has a wide range of physiological activities and significant pharmacfological effects. However, studies and clinical applications have revealed a series of drawbacks such as its poor water solubility, low bioavailability, and the fact that it can be toxic to humans. The results of many researchers have confirmed that chemical structural modifications and nanocarrier delivery can address the limited application of Tet and improve its efficacy. In this paper, we summarize the anti-tumor efficacy and mechanism of action, anti-inflammatory efficacy and mechanism of action, and clinical applications of Tet, and describe the progress of Tet based on chemical structure modification and nanocarrier delivery, aiming to explore more diverse structures to improve the pharmacological activity of Tet and provide ideas to meet clinical needs.

6.
J Colloid Interface Sci ; 616: 730-738, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35247811

RESUMEN

CsPbI3 with suitable bandgap (∼1.73 eV) and excellent photoelectric performance are considered promising candidates for new-generation photovoltaic and photoelectric devices. However, the phase instability of CsPbI3 hinders its application in photoelectric devices. In this study, cubic phase CsPbI3 nano-bricks with high stability are prepared on Si substrates by catalyst-freehigh-pressure pulsedlaser deposition.Theeffectsofthetarget-substrate distance on the morphological, structural and photoluminescence propertiesofCsPbI3 nano-bricks are investigated. CsPbI3 nano-bricks exhibits excellent long-term stability for 12 months, which can be attributed to the smaller lattice mismatch between Si (100) and CsPbI3 (100). Furthermore, the photodetector based on CsPbI3/n-Si heterojunction exhibited obvious spectral response in the red band of 710 nm. This work provides a novel idea for the preparation of photoelectric devices with cubic CsPbI3.

7.
Opt Lett ; 46(17): 4252-4255, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469987

RESUMEN

All-inorganic lead-free perovskite Cs3Cu2I5 thin films were prepared using pulsed laser deposition. Effects of the substrate temperature, laser energy, and laser frequency on the film structure and optoelectronic properties were studied. A heterojunction photodetector based on Cs3Cu2I5/n-Si was constructed, and the deep-ultraviolet photoresponse was obtained. A high Ilight/Idark ratio of 130 was achieved at -1.3V, and the peak response of the heterojunction photodetector was 70.8 mA/W (280 nm), with the corresponding specific detectivity of 9.44×1011cm⋅Hz1/2⋅W-1. Moreover, the device showed good stability after being exposed to air for 30 days.

8.
J Fluoresc ; 26(1): 43-51, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26531213

RESUMEN

(E)-N-((8-Hydroxy-1,2,3,5,6,7-hexahydropyrido-[3,2,1-ij]-quinolin-9-yl)methylene)-4-tert-butyl -benzhydrazide has been developed as a single, dual-functional chemosensor. The chemosensor showed a good selectivity and sensitivity toward to Al(3+) and Cu(2+) at a low detection limit, respectively. Theoretical calculations have also been carried out to understand the configuration of the complexes.


Asunto(s)
Aluminio/análisis , Cobre/análisis , Colorantes Fluorescentes/química , Piridinas/química , Quinolinas/química , Agua/química , Estructura Molecular , Piridinas/síntesis química , Quinolinas/síntesis química , Espectrofotometría
9.
Cerebrospinal Fluid Res ; 2: 7, 2005 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-16174300

RESUMEN

BACKGROUND: The central nervous system (CNS) is extremely vulnerable to ischemic injury. The details underlying this susceptibility are not completely understood. Since the CNS is surrounded by cerebrospinal fluid (CSF) that contains a low concentration of plasma protein, we examined the effect of changing the CSF in the evolution of CNS injury during ischemic insult. METHODS: Lumbar spinal cord ischemia was induced in rabbits by cross-clamping the descending abdominal aorta for 1 h, 2 h or 3 h followed by 7 d of reperfusion. Prior to ischemia, rabbits were subjected to the following procedures; 1) CSF depletion, 2) CSF replenishment at 0 mmHg intracranial pressure (ICP), and 3) replacement of CSF with 8% albumin- or 1% gelatin-modified artificial CSF, respectively. Motor function of the hind limbs and histopathological changes of the spinal cord were scored. Post-ischemic microcirculation of the spinal cord was visualized by fluorescein isothiocyanate (FITC) albumin. RESULTS: The severity of histopathological damage paralleled the neurological deficit scores. Paraplegia and associated histopathological changes were accompanied by a clear post-ischemic deficit in blood perfusion. Spinal cord ischemia for 1 h resulted in permanent paraplegia in the control group. Depletion of the CSF significantly prevented paraplegia. CSF replenishment with the ICP reduced to 0 mmHg, did not prevent paraplegia. Replacement of CSF with albumin- or gelatin-modified artificial CSF prevented paraplegia in rabbits even when the ICP was maintained at 10-15 mmHg. CONCLUSION: We conclude that the presence of normal CSF may contribute to the vulnerability of the spinal cord to ischemic injury. Depletion of the CSF or replacement of the CSF with an albumin- or gelatin-modified artificial CSF can be neuroprotective.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA