Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37447010

RESUMEN

Hydrogen sulfide (H2S) is involved in the regulation of plant salt stress as a potential signaling molecule. This work investigated the effect of H2S on cucumber growth, photosynthesis, antioxidation, ion balance, and other salt tolerance pathways. The plant height, stem diameter, leaf area and photosynthesis of cucumber seedlings were significantly inhibited by 50 mmol·L-1 NaCl. Moreover, NaCl treatment induced superoxide anion (O2·-) and Na+ accumulation and affected the absorption of other mineral ions. On the contrary, exogenous spraying of 200 µmol·L-1 sodium hydrosulfide (NaHS) maintained the growth of cucumber seedlings, increased photosynthesis, enhanced the ascorbate-glutathione cycle (AsA-GSH), and promoted the absorption of mineral ions under salt stress. Meanwhile, NaHS upregulated SOS1, SOS2, SOS3, NHX1, and AKT1 genes to maintain Na+/K+ balance and increased the relative expression of MAPK3, MAPK4, MAPK6, and MAPK9 genes to enhance salt tolerance. These positive effects of H2S could be reversed by 150 mmol·L-1 propargylglycine (PAG, a specific inhibitor of H2S biosynthesis). These results indicated that H2S could mitigate salt damage in cucumber, mainly by improving photosynthesis, enhancing the AsA-GSH cycle, reducing the Na+/K+ ratio, and inducing the SOS pathway and MAPK pathway.

2.
Front Plant Sci ; 13: 1023178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438149

RESUMEN

This study investigated the effects of exogenous 2, 4-epibrassinolide lactone (EBR) on the growth, photosynthetic pigments, antioxidant defense system, ion homeostasis, MAPK cascade and key genes of SOS signaling pathway of cucumber seedlings under salt stress using cucumber "Xinchun 4" as the test material. The experiment was set up with four treatments: foliar spraying of distilled water (CK), 50 mmol.L-1 NaCl (NaCl), 50 mmol.L-1 NaCl+foliar spray of 0.02 µmol.L-1 EBR (EBR+NaCl), and 50 mmol.L-1 NaCl+foliar spray of 24 µmol.L-1 Brassinazole (BRZ) (BRZ+NaCl). The results showed that EBR+NaCl treatment significantly increased plant height, above-ground fresh weight, total root length, total root surface area, average rhizome and photosynthetic pigment content compared to NaCl treatment. Meanwhile, compared with NaCl treatment, EBR+NaCl treatment significantly increased superoxide dismutase, catalase and ascorbate peroxidase (SOD, CAT and APX) activities, significantly promoted the accumulation of osmoregulatory substances (soluble sugars and proline), and thus effectively reduced malondialdehyde (MDA) content and relative electrical conductivity of cucumber leaves. Exogenous spraying of EBR also significantly reduced Na+/K+ under NaCl stress, effectively alleviating the toxic effects of Na+ ions. In addition, exogenous EBR induced the up-regulated expression of CsMAPK3, CsMAPK4, CsMAPK6 and CsMAPK9 genes in the MAPK cascade signaling pathway and CsSOS1, CsSOS2 and CsSOS3 genes in the SOS signaling pathway to enhance salt tolerance in cucumber under NaCl stress. Therefore, exogenous spraying EBR may effectively reduce the damage of salt stress on cucumber seedlings by improving antioxidant capacity, maintaining ion homeostasis and activating salt-tolerant related signaling pathways, which might promote the growth of cucumber seedlings and the establishment of root system morphology. This study provides a reference for EBR to improve the salt tolerance of cucumber.

3.
Antioxidants (Basel) ; 11(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36009305

RESUMEN

Tomatoes have high nutritional value and abundant bioactive compounds. Moderate water deficit irrigation alters metabolic levels of fruits, improving composition and quality. We investigated the effects of water deficit (T1, T2, T3, and T4) treatments and adequate irrigation (CK) on tomato polyphenol composition, antioxidant capacity, and nutritional quality. Compared with CK, the total flavonoid content increased by 33.66% and 44.73% in T1 and T2, and total phenols increased by 57.64%, 72.22%, and 55.78% in T1, T2, and T3, respectively. The T2 treatment significantly enhanced antioxidant' capacities (ABTS, HSRA, FRAP, and DPPH). There were multiple groups of significant or extremely significant positive correlations between polyphenol components and antioxidant activity. For polyphenols and antioxidant capacity, the classification models divided the treatments: CK and T4 and T1−T3. The contents of soluble solids, soluble protein, vitamin C, and soluble sugar of the treatment groups were higher than those of CK. The soluble sugar positively correlated with sugar−acid ratios. In the PCA-based model, T3 in the first quadrant indicated the best treatment in terms of nutritional quality. Overall, comprehensive rankings using principal component analysis (PCA) revealed T2 > T1 > T3 > T4 > CK. Therefore, the T2 treatment is a suitable for improving quality and antioxidant capacity. This study provides novel insights into improving water-use efficiency and quality in the context of water scarcity worldwide.

4.
Infect Drug Resist ; 11: 1083-1095, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30122965

RESUMEN

PURPOSE: The main objective of our meta-analysis was to examine the in vitro synergistic effect of meropenem-based combination therapies against Acinetobacter baumannii through a systematic review of the existing literature. METHODS: An extensive search was performed with no restrictions on date of publication, language, and publication type. Our study evaluated the main conclusions drawn from various studies describing the synergistic activity of combination therapies in vitro. RESULTS: In this review, 56 published studies were included. Our report included data on 20 types of antibiotics combined with meropenem in 1,228 Acinetobacter baumannii isolates. In time-kill studies, meropenem combined with polymyxin B and rifampicin showed synergy rates of 98.3% (95% CI, 83.7%-100.0%) and 89.4% (95% CI, 57.2%-100.0%), respectively, for Acinetobacter baumannii, modest synergy rates were found for meropenem combined with several antibiotics such as colistin and sulbactam, and no synergy effect was displayed in the combination of meropenem and ciprofloxacin, whereas in checkerboard method, the synergy rates of polymyxin B and rifampicin were 37.0% (95% CI, 0.00%-100.0%) and 56.3% (95% CI, 8.7%-97.8%), respectively. CONCLUSION: We found that time-kill studies generally identified the greatest synergy, while checkerboard and Etest methods yielded relatively poor synergy rates. Further well-designed in vivo studies should be carried out to confirm these findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...