Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.325
Filtrar
1.
Poult Sci ; 103(7): 103768, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38703758

RESUMEN

Baicalein (BAI) is a natural flavonoid with antioxidant, antitumor and antibacterial properties. However, the bioavailability of BAI was limited due to low solubility. This study aims to improve the solubility of BAI through the amorphous solid dispersion (ASD) and evaluate changes in its pharmacokinetics and pharmacodynamics in Taihang chickens. Polyethylene caprolactam-polyvinyl acetate-polyethylene glycol grafted copolymer (Soluplus) was chosen as the carrier, and ASD was prepared by rotary evaporation and was characterized by powder X-ray diffractions (PXRD), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FT-IR). In vitro dissolution assays were used to screen the optimal ratio of drug to carrier, in vivo pharmacokinetic assays were conducted to investigate the promoting effect on the absorption. In addition, the effects of ASD on the growth performance, meat quality, antioxidant capacity and intestinal flora were investigated. ASD (1:9 and 2:8) did not exhibit crystal diffraction peaks of BAI in PXRD or endothermic peaks in DSC, indicating the successful preparation of ASD. The results of in vitro dissolution assay showed that the cumulative dissolution rate of ASD (2:8) within 600 min was 52.67%, which was 7.84-fold higher than BAI. The pharmacokinetic results showed that the peak concentration (Cmax) and the area under the drug-time curve (AUC0∼24) of ASD (2:8) was (5.20 ± 0.82) µg/mL and (17.03 ± 0.67) µg·h/mL, which was 1.91 and 2.64-fold higher than BAI, respectively. Dietary supplementation of BAI and ASD could increase average daily gain (ADG), while decrease feed conversion ratio (FCR), but there was no significant difference (P > 0.05). The drip loss of BAIASD group was lower than BAI group (P < 0.05). In addition, the antioxidant capacity of Taihang chickens were enhanced, the diversity and the abundance of beneficial bacteria was improved. Results of BAI upon the dietary supplementation tested in Taihang chickens, after preparation of ASD, indicating a superior enhancement effect in growth performance, meat quality, antioxidant capacity and intestinal flora due to an improved solubility and optimized bioavailability.

2.
Biochem Pharmacol ; 225: 116267, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723721

RESUMEN

Acute liver failure (ALF) is a critical condition that can lead to substantial liver dysfunction. It is characterized by complex clinical manifestations and rapid progression, presenting significant challenges in diagnosis and treatment. We investigated the protective effect of mefunidone (MFD), a novel antifibrosis pyridone agent, on ALF in mice, and explored its potential mechanism of action. MFD pretreatment can alleviate lipopolysaccharide (LPS) and d-galactosamine (D-GalN)-induced ALF, reduce hepatocyte apoptosis, and reduce inflammation and oxidative stress. Additionally, MFD alleviated LPS/D-GalN-stimulated reactive oxygen species (ROS) production and cell death in AML12 cells. RNA sequencing enrichment analysis showed that MFD significantly affected the Mitogen-Activated Protein Kinase (MAPK) pathway. In vivo and in vitro experiments showed that MFD inhibited MKK4 and JNK phosphorylation. JNK activation caused by MKK4 and JNK activators could eliminate the therapeutic effect of MFD on AML12. In addition, MFD pretreatment alleviated ConA-induced ALF, reduced inflammation and oxidative stress in mice, and reduced mouse mortality. These results suggest that MFD can potentially protect against ALF, partially by inhibiting the MKK4-JNK pathway, and is a promising new therapeutic drug for ALF.

3.
J Colloid Interface Sci ; 669: 104-116, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705110

RESUMEN

Aqueous zinc ion batteries (AZIBs) face significant challenges stemming from Zn dendrite growth and water-contact attack, primarily due to the lack of a well-designed solid electrolyte interphase (SEI) to safeguard the Zn anode. Herein, we report a bio-mass derived polymer of chitin on Zn anode (Zn@chitin) as a novel and robust artificial SEI layer to boost the Zn anode rechargeability. The polymeric chitin SEI layer features both zincophilic and hydrophobic characteristics to target the suppressed dendritic Zn formation as well as the water-induced side reactions, thus harvesting a dendrite-free and corrosion-resistant Zn anode. More importantly, this polymeric interphase layer is strong and flexible accommodating the volume changes during repeated cycling. Based on these benefits, the Zn@chitin anode demonstrates prolonged cycling performance surpassing 1300 h under an ultra-large current density of 20 mA cm-2, and a long cycle life of 680 h with a record-high zinc utilization rate of 80 %. Besides, the assembled Zn@chitin/V2O5 full batteries reveal excellent capacity retention and rate performance under practical conditions, proving the reliability of our proposed strategy for industrial AZIBs. Our research offers valuable insights for constructing high-performance AZIBs, and simultaneously realizes the high-efficient use of cheap biomass from a "waste-to-wealth" concept.

4.
J Phys Chem Lett ; : 5452-5466, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747729

RESUMEN

Recent progress on the constraint coordinate-momentum phase space (CPS) formulation of finite-state quantum systems has revealed that the triangle window function approach is an isomorphic representation of the exact population-population correlation function of the two-state system. We use the triangle window (TW) function and the CPS mapping kernel element to formulate a novel useful representation of discrete electronic degrees of freedom (DOFs). When it is employed with nonadiabatic field (NaF) dynamics, a new variant of the NaF approach (i.e., NaF-TW) is proposed. The NaF-TW expression of the population of any adiabatic state is always positive semidefinite. Extensive benchmark tests of model systems in both the condensed phase and gas phase demonstrate that the NaF-TW approach is able to faithfully capture the dynamical interplay between electronic and nuclear DOFs in a broad region, including where the states remain coupled all the time, as well as where the bifurcation characteristic of nuclear motion is important.

5.
J Chem Phys ; 160(17)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38748016

RESUMEN

The impacting phenomenon of nanodroplets has received much attention due to their importance in various industrial applications. The oblique impingement of single droplets is well understood; however, the effect of oblique angle on impacting the dynamics of multiple droplets at the nanoscale is very limited. To address this gap, we perform molecular dynamics (MD) simulations to study the impacting dynamics of binary nanodroplets with various oblique angles (αob) and Weber numbers (We). Using MD simulations, we directly capture the detailed morphological evolution of the impacting binary droplets with various given conditions. Compared to the oblique impingement of a single droplet, the evolution of impacting binary droplets involves two novel dynamic characteristics: the asymmetric dynamics with droplet preferential spreading in the y direction and the rotating of the coalescing droplet. The mechanisms underlying are well studied. The asymmetric dynamics is a result of the velocity gradient of the outer edge of the spreading droplet, and the rotating effect is due to the change in angular momentum induced by surface force. The analysis and study of these phenomena have never been mentioned in previous studies of single droplet. Finally, we investigate the effect of αob and We on normalized moving distance (L/Dsin) and contact time (tc). This work paves the way for offering a comprehensive understanding of the oblique impingement of binary nanodroplets.

6.
J Clin Invest ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743498

RESUMEN

One of the features of pathological cardiac hypertrophy is enhanced translation and protein synthesis. Translational inhibition has been shown to be an effective means of treating cardiac hypertrophy, although system-wide side effects are common. Regulators of translation, such as cardiac-specific long non-coding RNAs (lncRNAs), could provide new, more targeted, therapeutic approaches to inhibit cardiac hypertrophy. Therefore, we generated mice lacking a previously identified lncRNA named CARDINAL to examine its cardiac function. We demonstrate that CARDINAL is a cardiac-specific, ribosome associated lncRNA and show that its expression is induced in the heart upon pathological cardiac hypertrophy; its deletion in mice exacerbates stress-induced cardiac hypertrophy and augments protein translation. In contrast, overexpression of CARDINAL attenuates cardiac hypertrophy in vivo and in vitro, and suppresses hypertrophy-induced protein translation. Mechanistically, CARDINAL interacts with developmentally regulated GTP binding protein 1 (DRG1) and blocks its interaction with DRG family regulatory protein 1 (DFRP1); as a result, DRG1 is downregulated, thereby modulating the rate of protein translation in the heart in response to stress. This study provides evidence for the therapeutic potential of targeting cardiac-specific lncRNAs to suppress disease-induced translational changes and to treat cardiac hypertrophy and heart failure.

7.
J Am Chem Soc ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722223

RESUMEN

Hydrides are promising candidates for achieving room-temperature superconductivity, but a formidable challenge remains in reducing the stabilization pressure below a megabar. In this study, we successfully synthesized a ternary lanthanum borohydride by introducing the nonmetallic element B into the La-H system, forming robust B-H covalent bonds that lower the pressure required to stabilize the superconducting phase. Electrical transport measurements confirm the presence of superconductivity with a critical temperature (Tc) of up to 106 K at 90 GPa, as evidenced by zero resistance and Tc shift under an external magnetic field. X-ray diffraction and transport measurements identify the superconducting compound as LaB2H8, a nonclathrate hydride, whose crystal structure remains stable at pressures as low as ∼ half megabar (59 GPa). Stabilizing superconductive stoichiometric LaB2H8 in a submegabar pressure regime marks a substantial advancement in the quest for high-Tc superconductivity in polynary hydrides, bringing us closer to the ambient pressure conditions.

8.
Nat Plants ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724696

RESUMEN

Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition. In multi-year and multi-site field trials in China, two ric1a/2a lines had improved grain yield, protein content and sustained oil content, demonstrating that gene editing towards optimal nodulation improves soybean yield and quality.

9.
Chemosphere ; 358: 142204, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38704044

RESUMEN

Bisphenol A (BPA) is a typical endocrine disruptor, which can be used as an industrial raw material for the synthesis of polycarbonate and epoxy resins, etc. Recently, BPA has appeared on the list of priority new pollutants for control in various countries and regions. In this study, phenolic resin waste was utilized as a multi-carbon precursor for the electrocatalytic cathode and loaded with cobalt/nitrogen (Co/N) on its surface to form qualitative two-dimensional carbon nano-flakes (Co/NC). The onset potentials, half-wave potentials, and limiting current densities of the nitrogen-doped composite carbon material Co/NC in oxygen saturated 0.5 mol H2SO4 were -0.08 V, -0.61 V, and -0.41 mA cm-2; and those of alkaline conditions were -0.65 V, -2.51 V, and -0.38 mA cm-2, and the corresponding indexes were improved compared with those of blank titanium electrodes, which indicated that the constructed nitrogen-doped composite carbon material Co/NC was superior in oxygen reduction ability. The catalysis by metallic cobalt as well as the N-hybridized active sites significantly improved the efficiency of electrocatalytic degradation of BPA. In the electro-Fenton system, the yield of hydrogen peroxide generated by cathodic reduction of oxygen was 4.012 mg L-1, which effectively promoted the activation of hydroxyl radicals. The removal rate of BPA was above 95% within 180 min. This work provides a new insight for the design and development of novel catalyst to degrade organic pollutants.

10.
Mol Neurobiol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709392

RESUMEN

The objective of the study is to determine the causal relationship and potential mechanisms between Parkinson's disease (PD) and neuroinflammatory and neurotoxic mediators. We conducted two-sample Mendelian randomization (2SMR) study and multivariable Mendelian randomization (MVMR) analysis to investigate the causality between PD and neuroinflammatory and neurotoxic mediators. The mediation analysis with MR was also conducted to determine the potential mediating effect of neuroinflammatory and neurotoxic mediators between asthma and PD. Genetically predicted levels of nine neuroinflammation were associated with changes in PD risk. The associations of PD with CCL24, galectin-3 levels, haptoglobin, and Holo-Transcobalamin-2 remained significant in multivariable analyses. The mediation analysis with MR revealed that asthma affects PD through CCL24 and galectin-3. The results showed neuroinflammation could affect the pathogenesis of PD. In the combined analysis of these nine variables, CCL24, galectin-3 levels, HP, and Holo-Transcobalamin-2 alone were found to be significant. Asthma plays an intermediary role through CCL24 and galectin-3 levels.

11.
Front Oncol ; 14: 1361527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699645

RESUMEN

Aim: To investigate whether age at first sexual intercourse could lead to any changes in the risk of oral cavity cancer. Methods: A two-sample mendelian randomization was conducted using genetic variants associated with age at first sexual intercourse in UK biobank as instrumental variables. Summary data of Northern American from a previous genome-wide association study aimed at oral cavity cancer was served as outcome. Three analytical methods: inverse variance-weighted, mendelian randomization Egger, and weighted median were used to perform the analysis, among which inverse variance-weighted was set as the primary method. Robustness of the results was assessed through Cochran Q test, mendelian randomization Egger intercept tests, MR PRESSO, leave one out analysis and funnel plot. Results: The primary analysis provided substantial evidence of a positive causal relationship age at first sexual intercourse and the risk of oral cavity cancer (p = 0.0002), while a delayed age at first sexual intercourse would lead to a decreased risk of suffering oral cavity cancer (ß = -1.013). The secondary outcomes confirmed the results (all ß < 0) and all assessments supported the robustness, too (all p > 0.05). Conclusion: The study demonstrates that a delayed sexual debut would provide protection against OCC, thus education on delaying sexual intercourse should be recommended.

12.
Front Plant Sci ; 15: 1372580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736444

RESUMEN

The Homeodomain-Leucine Zipper (HD-ZIP) transcription factors play a pivotal role in governing various aspects of plant growth, development, and responses to abiotic stress. Despite the well-established importance of HD-ZIPs in many plants, their functions in Acoraceae, the basal lineage of monocots, remain largely unexplored. Using recently published whole-genome data, we identified 137 putative HD-ZIPs in two Acoraceae species, Acorus gramineus and Acorus calamus. These HD-ZIP genes were further classified into four subfamilies (I, II, III, IV) based on phylogenetic and conserved motif analyses, showcasing notable variations in exon-intron patterns among different subfamilies. Two microRNAs, miR165/166, were found to specifically target HD-ZIP III genes with highly conserved binding sites. Most cis-acting elements identified in the promoter regions of Acoraceae HD-ZIPs are involved in modulating light and phytohormone responsiveness. Furthermore, our study revealed an independent duplication event in Ac. calamus and a one-to-multiple correspondence between HD-ZIP genes of Ac. calamus and Ac. gramineus. Expression profiles obtained from qRT-PCR demonstrated that HD-ZIP I genes are strongly induced by salinity stress, while HD-ZIP II members have contrasting stress responses in two species. HD-ZIP III and IV genes show greater sensitivity in stress-bearing roots. Taken together, these findings contribute valuable insights into the roles of HD-ZIP genes in stress adaptation and plant resilience in basal monocots, illuminating their multifaceted roles in plant growth, development, and response to abiotic stress.

13.
Lab Chip ; 24(10): 2622-2632, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38644672

RESUMEN

Genetically modified (GM) food is still highly controversial nowadays. Due to the disparate policies and attitudes worldwide, demands for a rapid, cost-effective and user-friendly GM crop identification method are increasingly significant for import administration, market supervision, etc. However, as the most-recognized methods, nucleic acid-based identification approaches require bulky instruments, long turn-around times and trained personnel, which are only suitable in laboratories. To fulfil the urgent needs of on-site testing, we develop a point-of-care testing platform that is able to identify 12 types of GM crops in less than 40 minutes without using laboratory settings. Our system integrates sample pre-treatment modules in a microfluidic chip, performs DNA amplification via a battery-powered portable kit, and presents results via eye-recognized colorimetric change. A paraffin-based reflow method and a slip plate-based fluid switch are developed to encapsulate and release amplification primers in individual microwells on demand, thus enabling identification of varied targets simultaneously. Our system offers an efficient, affordable and convenient tool for GM crop identification, thus it will not only benefit customs and market administration bureaus, but also satisfy demands of numerous consumers.


Asunto(s)
Productos Agrícolas , Plantas Modificadas Genéticamente , Pruebas en el Punto de Atención , Plantas Modificadas Genéticamente/genética , Productos Agrícolas/genética , Dispositivos Laboratorio en un Chip , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación
14.
J Transl Med ; 22(1): 349, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610029

RESUMEN

BACKGROUND: Chimeric antigen receptor T (CAR-T) cell therapy, as an emerging anti-tumor treatment, has garnered extensive attention in the study of targeted therapy of multiple tumor-associated antigens in hepatocellular carcinoma (HCC). However, the suppressive microenvironment and individual heterogeneity results in downregulation of these antigens in certain patients' cancer cells. Therefore, optimizing CAR-T cell therapy for HCC is imperative. METHODS: In this study, we administered FGFR4-ferritin (FGFR4-HPF) nanoparticles to the alpaca and constructed a phage library of nanobodies (Nbs) derived from alpaca, following which we screened for Nbs targeting FGFR4. Then, we conducted the functional validation of Nbs. Furthermore, we developed Nb-derived CAR-T cells and evaluated their anti-tumor ability against HCC through in vitro and in vivo validation. RESULTS: Our findings demonstrated that we successfully obtained high specificity and high affinity Nbs targeting FGFR4 after screening. And the specificity of Nbs targeting FGFR4 was markedly superior to their binding to other members of the FGFR family proteins. Furthermore, the Nb-derived CAR-T cells, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in both experiments when in vitro and in vivo. CONCLUSIONS: In summary, the results of this study suggest that the CAR-T cells derived from high specificity and high affinity Nbs, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in vitro and in vivo. This is an exploration of FGFR4 in the field of Nb-derived CAR-T cell therapy for HCC, holding promise for enhancing safety and effectiveness in the clinical treatment of HCC in the future.


Asunto(s)
Camélidos del Nuevo Mundo , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores Quiméricos de Antígenos , Anticuerpos de Dominio Único , Humanos , Animales , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Microambiente Tumoral
15.
Molecules ; 29(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611863

RESUMEN

Dalbergia pinnata (Lour.) Prain (D. pinnata) is a valuable medicinal plant, and its volatile parts have a pleasant aroma. In recent years, there have been a large number of studies investigating the effect of aroma on human performance. However, the effect of the aroma of D. pinnata on human psychophysiological activity has not been reported. Few reports have been made about the effects of aroma and sound on human electroencephalographic (EEG) activity. This study aimed to investigate the effects of D. pinnata essential oil in EEG activity response to various auditory stimuli. In the EEG study, 30 healthy volunteers (15 men and 15 women) participated. The electroencephalogram changes of participants during the essential oil (EO) of D. pinnata inhalation under white noise, pink noise and traffic noise stimulations were recorded. EEG data from 30 electrodes placed on the scalp were analyzed according to the international 10-20 system. The EO of D. pinnata had various effects on the brain when subjected to different auditory stimuli. In EEG studies, delta waves increased by 20% in noiseless and white noise environments, a change that may aid sleep and relaxation. In the presence of pink noise and traffic noise, alpha and delta wave activity (frontal pole and frontal lobe) increased markedly when inhaling the EO of D. pinnata, a change that may help reduce anxiety. When inhaling the EO of D. pinnata with different auditory stimuli, women are more likely to relax and get sleepy compared to men.


Asunto(s)
Dalbergia , Aceites Volátiles , Masculino , Humanos , Femenino , Sonido , Ansiedad , Electroencefalografía , Aceites Volátiles/farmacología
16.
Molecules ; 29(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38611903

RESUMEN

In this work, we have observed that some chiral boron clusters (B16-, B20-, B24-, and B28-) can simultaneously have helical molecular orbitals and helical spin densities; these seem to be the first compounds discovered to have this intriguing property. We show that chiral Jahn-Teller distortion of quasi-planar boron clusters drives the formation of the helical molecular spin densities in these clusters and show that elongation/enhancement in helical molecular orbitals can be achieved by simply adding more building blocks via a linker. Aromaticity of these boron clusters is discussed. Chiral boron clusters may find potential applications in spintronics, such as molecular magnets.

17.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612608

RESUMEN

The relentless pursuit of effective strategies against skin aging has led to significant interest in the role of bioactive factors, particularly secondary metabolites from natural sources. The purpose of this study is to meticulously explore and summarize the recent advancements in understanding and utilization of bioactive factors against skin aging, with a focus on their sources, mechanisms of action, and therapeutic potential. Skin, the largest organ of the body, directly interacts with the external environment, making it susceptible to aging influenced by factors such as UV radiation, pollution, and oxidative stress. Among various interventions, bioactive factors, including peptides, amino acids, and secondary metabolites, have shown promising anti-aging effects by modulating the biological pathways associated with skin integrity and youthfulness. This article provides a comprehensive overview of these bioactive compounds, emphasizing collagen peptides, antioxidants, and herbal extracts, and discusses their effectiveness in promoting collagen synthesis, enhancing skin barrier function, and mitigating the visible signs of aging. By presenting a synthesis of the current research, this study aims to highlight the therapeutic potential of these bioactive factors in developing innovative anti-aging skin care solutions, thereby contributing to the broader field of dermatological research and offering new perspectives for future studies. Our findings underscore the importance of the continued exploration of bioactive compounds for their potential to revolutionize anti-aging skin care and improve skin health and aesthetics.


Asunto(s)
Envejecimiento de la Piel , Aminoácidos , Colágeno , Péptidos/farmacología
18.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38612909

RESUMEN

Skin aging is a complex process involving structural and functional changes and is characterized by a decrease in collagen content, reduced skin thickness, dryness, and the formation of wrinkles. This process is underpinned by multiple mechanisms including the free radical theory, inflammation theory, photoaging theory, and metabolic theory. The skin immune system, an indispensable part of the body's defense mechanism, comprises macrophages, lymphocytes, dendritic cells, and mast cells. These cells play a pivotal role in maintaining skin homeostasis and responding to injury or infection. As age advances, along with various internal and external environmental stimuli, skin immune cells may undergo senescence or accelerated aging, characterized by reduced cell division capability, increased mortality, changes in gene expression patterns and signaling pathways, and altered immune cell functions. These changes collectively impact the overall function of the immune system. This review summarizes the relationship between skin aging and immunity and explores the characteristics of skin aging, the composition and function of the skin immune system, the aging of immune cells, and the effects of these cells on immune function and skin aging. Immune dysfunction plays a significant role in skin aging, suggesting that immunoregulation may become one of the important strategies for the prevention and treatment of skin aging.


Asunto(s)
Envejecimiento de la Piel , Piel , Mastocitos , División Celular
19.
BMC Biol ; 22(1): 92, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654264

RESUMEN

BACKGROUND: Transposable elements (TEs) have a profound influence on the trajectory of plant evolution, driving genome expansion and catalyzing phenotypic diversification. The pangenome, a comprehensive genetic pool encompassing all variations within a species, serves as an invaluable tool, unaffected by the confounding factors of intraspecific diversity. This allows for a more nuanced exploration of plant TE evolution. RESULTS: Here, we constructed a pangenome for diploid A-genome cotton using 344 accessions from representative geographical regions, including 223 from China as the main component. We found 511 Mb of non-reference sequences (NRSs) and revealed the presence of 5479 previously undiscovered protein-coding genes. Our comprehensive approach enabled us to decipher the genetic underpinnings of the distinct geographic distributions of cotton. Notably, we identified 3301 presence-absence variations (PAVs) that are closely tied to gene expression patterns within the pangenome, among which 2342 novel expression quantitative trait loci (eQTLs) were found residing in NRSs. Our investigation also unveiled contrasting patterns of transposon proliferation between diploid and tetraploid cotton, with long terminal repeat (LTR) retrotransposons exhibiting a synchronized surge in polyploids. Furthermore, the invasion of LTR retrotransposons from the A subgenome to the D subgenome triggered a substantial expansion of the latter following polyploidization. In addition, we found that TE insertions were responsible for the loss of 36.2% of species-specific genes, as well as the generation of entirely new species-specific genes. CONCLUSIONS: Our pangenome analyses provide new insights into cotton genomics and subgenome dynamics after polyploidization and demonstrate the power of pangenome approaches for elucidating transposon impacts and genome evolution.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Genoma de Planta , Gossypium , Gossypium/genética , Elementos Transponibles de ADN/genética , Sitios de Carácter Cuantitativo
20.
World J Psychiatry ; 14(4): 533-540, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38659606

RESUMEN

BACKGROUND: Oral implant surgery is an effective procedure for artificial implants in missing tooth areas under local anesthesia. Because patients under local anesthesia are conscious during this procedure, compared with general anesthesia-related operations, they are more likely to experience negative emotions, such as anxiety and tension. These emotional reactions result in shivering and chills in the limbs, leading to poor doctor-patient cooperation and even avoidance of treatment. In traditional Chinese medicine, it is believed that acupoint massage regulates blood and Qi, dredge menstruation, and relieve pain, which is beneficial for patients' emotional adjustment; however, there are few related clinical studies. AIM: To observe the changes in anxiety and pain in patients with oral implant after acupoint massage combined with touch therapy. METHODS: One hundred patients undergoing oral implantation in our hospital between May 2020 and May 2023 were randomly divided into control and study groups, according to a random number table, with 50 patients in each group. The control group received routine intervention, and the study group received acupoint massage combined with touch on the basis of the control group. Anxiety [assessed using the Modified Dental Anxiety Scale (MDAS)], pain severity, blood pressure, heart rate, and satisfaction were compared between the two groups. RESULTS: Before intervention, the difference in MDAS score between the two groups was not significant (P > 0.05), while after the intervention, the MDAS scores decreased in both groups compared with those before the intervention (P < 0.05); the MDAS score of the study group was lower than that of the control group, with a statistically significant difference (P < 0.05). The degree of pain in the intervention group was significantly lower than that in the control group (P < 0.05). Before the intervention, there were no significant differences in systolic and diastolic blood pressures or heart rate between the two groups (P > 0.05). The systolic and diastolic blood pressures and heart rate in the intervention group, during and after the intervention, were significantly lower than those in the control group (P < 0.05). The total degree of satisfaction in the study group was significantly higher than that in the control group (P < 0.05). CONCLUSION: Acupoint massage combined with touch better relieves anxiety and pain in patients undergoing dental implant surgery, improving the perioperative comfort of these patients and ensuring safety and a smooth operation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...