Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
BMC Pregnancy Childbirth ; 24(1): 371, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750445

RESUMEN

BACKGROUND: To explore a method for screening and diagnosing neonatal congenital heart disease (CHD) applicable to grassroots level, evaluate the prevalence of CHD, and establish a hierarchical management system for CHD screening and treatment at the grassroots level. METHODS: A total of 24,253 newborns born in Tang County between January 2016 and December 2020 were consecutively enrolled and screened by trained primary physicians via the "twelve-section ultrasonic screening and diagnosis method" (referred to as the "twelve-section method"). Specialized staff from the CHD Screening and Diagnosis Center of Hebei Children's Hospital regularly visited the local area for definite diagnosis of CHD in newborns who screened positive. Newborns with CHD were managed according to the hierarchical management system. RESULTS: The centre confirmed that, except for 2 newborns with patent ductus arteriosus missed in the diagnosis of ventricular septal defect combined with severe pulmonary hypertension, newborns with other isolated or concomitant simple CHDs were identified at the grassroots level. The sensitivity, specificity and diagnostic coincidence rate of the twelve-section method for screening complex CHD were 92%, 99.6% and 84%, respectively. A total of 301 children with CHD were identified. The overall CHD prevalence was 12.4‰. According to the hierarchical management system, 113 patients with simple CHD recovered spontaneously during local follow-up, 48 patients continued local follow-up, 106 patients were referred to the centre for surgery (including 17 patients with severe CHD and 89 patients with progressive CHD), 1 patient died without surgery, and 8 patients were lost to follow-up. Eighteen patients with complex CHD were directly referred to the centre for surgery, 3 patients died without surgery, and 4 patients were lost to follow-up. Most patients who received early intervention achieved satisfactory results. The mortality rate of CHD was approximately 28.86 per 100,000 children. CONCLUSIONS: The "twelve-section method" is suitable for screening neonatal CHD at the grassroots level. The establishment of a hierarchical management system for CHD screening and treatment is conducive to the scientific management of CHD, which has important clinical and social significance for early detection, early intervention, reduction in mortality and improvement of the prognosis of complex and severe CHDs.


Asunto(s)
Cardiopatías Congénitas , Tamizaje Neonatal , Humanos , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/diagnóstico por imagen , Recién Nacido , China/epidemiología , Tamizaje Neonatal/métodos , Femenino , Masculino , Prevalencia , Sensibilidad y Especificidad
2.
New Phytol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509454

RESUMEN

Gene expression is regulated at multiple levels, including RNA processing and DNA methylation/demethylation. How these regulations are controlled remains unclear. Here, through analysis of a suppressor for the OsEIN2 over-expressor, we identified an RNA recognition motif protein SUPPRESSOR OF EIN2 (SOE). SOE is localized in nuclear speckles and interacts with several components of the spliceosome. We find SOE associates with hundreds of targets and directly binds to a DNA glycosylase gene DNG701 pre-mRNA for efficient splicing and stabilization, allowing for subsequent DNG701-mediated DNA demethylation of the transgene promoter for proper gene expression. The V81M substitution in the suppressor mutant protein mSOE impaired its protein stability and binding activity to DNG701 pre-mRNA, leading to transgene silencing. SOE mutation enhances grain size and yield. Haplotype analysis in c. 3000 rice accessions reveals that the haplotype 1 (Hap 1) promoter is associated with high 1000-grain weight, and most of the japonica accessions, but not indica ones, have the Hap 1 elite allele. Our study discovers a novel mechanism for the regulation of gene expression and provides an elite allele for the promotion of yield potentials in rice.

3.
Mol Plant ; 16(11): 1847-1865, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37822080

RESUMEN

Histone H2A monoubiquitination is associated with transcriptional repression and needs to be removed by deubiquitinases to facilitate gene transcription in eukaryotes. However, the deubiquitinase responsible for genome-wide H2A deubiquitination in plants has yet to be identified. In this study, we found that the previously identified PWWP-EPCR-ARID-TRB (PEAT) complex components interact with both the ubiquitin-specific protease UBP5 and the redundant histone acetyltransferases HAM1 and HAM2 (HAM1/2) to form a larger version of PEAT complex in Arabidopsis thaliana. UBP5 functions as an H2A deubiquitinase in a nucleosome substrate-dependent manner in vitro and mediates H2A deubiquitination at the whole-genome level in vivo. HAM1/2 are shared subunits of the PEAT complex and the conserved NuA4 histone acetyltransferase complex, and are responsible for histone H4K5 acetylation. Within the PEAT complex, the PWWP components (PWWP1, PWWP2, and PWWP3) directly interact with UBP5 and are necessary for UBP5-mediated H2A deubiquitination, while the EPCR components (EPCR1 and EPCR2) directly interact with HAM1/2 and are required for HAM1/2-mediated H4K5 acetylation. Collectively, our study not only identifies dual roles of the PEAT complex in H2A deubiquitination and H4K5 acetylation but also illustrates how these processes collaborate at the whole-genome level to regulate the transcription and development in plants.


Asunto(s)
Arabidopsis , Histonas , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Receptor de Proteína C Endotelial , Acetilación , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Enzimas Desubicuitinizantes , Suelo
4.
EMBO J ; 42(19): e113639, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37565504

RESUMEN

WRKY transcription factors in plants are known to be able to mediate either transcriptional activation or repression, but the mechanism regulating their transcriptional activity is largely unclear. We found that group IId WRKY transcription factors interact with OBERON (OBE) proteins, forming redundant WRKY-OBE complexes in Arabidopsis thaliana. The coiled-coil domain of WRKY transcription factors binds to OBE proteins and is responsible for target gene selection and transcriptional repression. The PHD finger of OBE proteins binds to both histones and WRKY transcription factors. WRKY-OBE complexes repress the transcription of numerous stress-responsive genes and are required for maintaining normal plant growth. Several WRKY and OBE mutants show reduced plant size and increased drought tolerance, accompanied by increased expression of stress-responsive genes. Moreover, expression levels of most of these WRKY and OBE genes are reduced in response to drought stress, revealing a previously uncharacterized regulatory mechanism of the drought stress response. These results suggest that WRKY-OBE complexes repress transcription of stress-responsive genes, and thereby balance plant growth and stress tolerance.


Asunto(s)
Arabidopsis , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Filogenia
5.
Sci Adv ; 9(32): eadg2699, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566662

RESUMEN

Programmed constitutive heterochromatin silencing is essential for eukaryotic genome regulation, yet the initial step of this process is ambiguous. A large proportion of R-loops (RNA:DNA hybrids) had been unexpectedly identified within Arabidopsis pericentromeric heterochromatin with unknown functions. Through a genome-wide R-loop profiling screen, we find that DDM1 (decrease in DNA methylation 1) is the primary restrictor of pericentromeric R-loops via its RNA:DNA helicase activity. Low levels of pericentromeric R-loops resolved by DDM1 cotranscriptionally can facilitate constitutive heterochromatin silencing. Furthermore, we demonstrate that DDM1 physically excludes histone H2A variant H2A.Z and promotes H2A.W deposition for faithful heterochromatin initiation soon after R-loop clearance. The dual functions of DDM1 in R-loop resolution and H2A.Z eviction are essential for sperm nuclei structure maintenance in mature pollen. Our work unravels the cotranscriptional R-loop resolution coupled with accurate H2A variants deposition is the primary step of constitutive heterochromatin silencing in Arabidopsis, which might be conserved across eukaryotes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Heterocromatina/genética , Estructuras R-Loop , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Semillas/metabolismo , ARN , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo
7.
Nat Plants ; 9(3): 442-459, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36879016

RESUMEN

Although a conserved SAGA complex containing the histone acetyltransferase GCN5 is known to mediate histone acetylation and transcriptional activation in eukaryotes, how to maintain different levels of histone acetylation and transcription at the whole-genome level remains to be determined. Here we identify and characterize a plant-specific GCN5-containing complex, which we term PAGA, in Arabidopsis thaliana and Oryza sativa. In Arabidopsis, the PAGA complex consists of two conserved subunits (GCN5 and ADA2A) and four plant-specific subunits (SPC, ING1, SDRL and EAF6). We find that PAGA and SAGA can independently mediate moderate and high levels of histone acetylation, respectively, thereby promoting transcriptional activation. Moreover, PAGA and SAGA can also repress gene transcription via the antagonistic effect between PAGA and SAGA. Unlike SAGA, which regulates multiple biological processes, PAGA is specifically involved in plant height and branch growth by regulating the transcription of hormone biosynthesis and response related genes. These results reveal how PAGA and SAGA cooperate to regulate histone acetylation, transcription and development. Given that the PAGA mutants show semi-dwarf and increased branching phenotypes without reduction in seed yield, the PAGA mutations could potentially be used for crop improvement.


Asunto(s)
Histona Acetiltransferasas , Histonas , Histonas/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Núcleo Celular/metabolismo , Plantas/genética , Transcripción Genética , Desarrollo de la Planta , Acetilación
8.
Nat Plants ; 8(12): 1423-1439, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36471048

RESUMEN

Although SWI/SNF chromatin remodelling complexes are known to regulate diverse biological functions in plants, the classification, compositions and functional mechanisms of the complexes remain to be determined. Here we comprehensively characterized SWI/SNF complexes by affinity purification and mass spectrometry in Arabidopsis thaliana, and found three classes of SWI/SNF complexes, which we termed BAS, SAS and MAS (BRM-, SYD- and MINU1/2-associated SWI/SNF complexes). By investigating multiple developmental phenotypes of SWI/SNF mutants, we found that three classes of SWI/SNF complexes have both overlapping and specific functions in regulating development. To investigate how the three classes of SWI/SNF complexes differentially regulate development, we mapped different SWI/SNF components on chromatin at the whole-genome level and determined their effects on chromatin accessibility. While all three classes of SWI/SNF complexes regulate chromatin accessibility at proximal promoter regions, SAS is a major SWI/SNF complex that is responsible for mediating chromatin accessibility at distal promoter regions and intergenic regions. Histone modifications are related to both the association of SWI/SNF complexes with chromatin and the SWI/SNF-dependent chromatin accessibility. Three classes of SWI/SNF-dependent accessibility may enable different sets of transcription factors to access chromatin. These findings lay a foundation for further investigation of the function of three classes of SWI/SNF complexes in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Factores de Transcripción/metabolismo , Cromatina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adenosina Trifosfatasas/metabolismo
9.
J Integr Plant Biol ; 64(12): 2438-2454, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36354145

RESUMEN

Although the Trithorax histone methyltransferases ATX1-5 are known to regulate development and stress responses by catalyzing histone H3K4 methylation in Arabidopsis thaliana, it is unknown whether and how these histone methyltransferases affect DNA methylation. Here, we found that the redundant ATX1-5 proteins are not only required for plant development and viability but also for the regulation of DNA methylation. The expression and H3K4me3 levels of both RNA-directed DNA methylation (RdDM) genes (NRPE1, DCL3, IDN2, and IDP2) and active DNA demethylation genes (ROS1, DML2, and DML3) were downregulated in the atx1/2/4/5 mutant. Consistent with the facts that the active DNA demethylation pathway mediates DNA demethylation mainly at CG and CHG sites, and that the RdDM pathway mediates DNA methylation mainly at CHH sites, whole-genome DNA methylation analyses showed that hyper-CG and CHG DMRs in atx1/2/4/5 significantly overlapped with those in the DNA demethylation pathway mutant ros1 dml2 dml3 (rdd), and that hypo-CHH DMRs in atx1/2/4/5 significantly overlapped with those in the RdDM mutant nrpe1, suggesting that the ATX paralogues function redundantly to regulate DNA methylation by promoting H3K4me3 levels and expression levels of both RdDM genes and active DNA demethylation genes. Given that the ATX proteins function as catalytic subunits of COMPASS histone methyltransferase complexes, we also demonstrated that the COMPASS complex components function as a whole to regulate DNA methylation. This study reveals a previously uncharacterized mechanism underlying the regulation of DNA methylation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ADN Glicosilasas , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo
10.
Nucleic Acids Res ; 50(13): 7380-7395, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35766439

RESUMEN

Although previous studies have identified several autonomous pathway components that are required for the promotion of flowering, little is known about how these components cooperate. Here, we identified an autonomous pathway complex (AuPC) containing both known components (FLD, LD and SDG26) and previously unknown components (EFL2, EFL4 and APRF1). Loss-of-function mutations of all of these components result in increased FLC expression and delayed flowering. The delayed-flowering phenotype is independent of photoperiod and can be overcome by vernalization, confirming that the complex specifically functions in the autonomous pathway. Chromatin immunoprecipitation combined with sequencing indicated that, in the AuPC mutants, the histone modifications (H3Ac, H3K4me3 and H3K36me3) associated with transcriptional activation are increased, and the histone modification (H3K27me3) associated with transcriptional repression is reduced, suggesting that the AuPC suppresses FLC expression at least partially by regulating these histone modifications. Moreover, we found that the AuPC component SDG26 associates with FLC chromatin via a previously uncharacterized DNA-binding domain and regulates FLC expression and flowering time independently of its histone methyltransferase activity. Together, these results provide a framework for understanding the molecular mechanism by which the autonomous pathway regulates flowering time.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Mutación
11.
J Integr Plant Biol ; 64(4): 901-914, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35043580

RESUMEN

Although two Enhancer of Polycomb-like proteins, EPL1A and EPL1B (EPL1A/B), are known to be conserved and characteristic subunits of the NuA4-type histone acetyltransferase complex in Arabidopsis thaliana, the biological function of EPL1A/B and the mechanism by which EPL1A/B function in the complex remain unknown. Here, we report that EPL1A/B are required for the histone acetyltransferase activity of the NuA4 complex on the nucleosomal histone H4 in vitro and for the enrichment of histone H4K5 acetylation at thousands of protein-coding genes in vivo. Our results suggest that EPL1A/B are required for linking the NuA4 catalytic subunits HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1(HAM1) and HAM2 with accessory subunits in the NuA4 complex. EPL1A/B function redundantly in regulating plant development especially in chlorophyll biosynthesis and de-etiolation. The EPL1A/B-dependent transcription and H4K5Ac are enriched at genes involved in chlorophyll biosynthesis and photosynthesis. We also find that EAF6, another characteristic subunit of the NuA4 complex, contributes to de-etiolation. These results suggest that the Arabidopsis NuA4 complex components function as a whole to mediate histone acetylation and transcriptional activation specifically at light-responsive genes and are critical for photomorphogenesis.


Asunto(s)
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Fotosíntesis/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
New Phytol ; 233(2): 751-765, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724229

RESUMEN

FLOWERING LOCUS M (FLM) is a well-known MADS-box transcription factor that is required for preventing early flowering under low temperatures in Arabidopsis thaliana. Alternative splicing of FLM is involved in the regulation of temperature-responsive flowering. However, how the basic transcript level of FLM is regulated is largely unknown. Here, we conducted forward genetic screening and identified a previously uncharacterized flowering repressor gene, UBA2c. Genetic analyses indicated that UBA2c represses flowering at least by promoting FLM transcription. We further demonstrated that UBA2c directly binds to FLM chromatin and facilitates FLM transcription by inhibiting histone H3K27 trimethylation, a histone marker related to transcriptional repression. UBA2c encodes a protein containing two putative RNA recognition motifs (RRMs) and one prion-like domain (PrLD). We found that UBA2c forms speckles in the nucleus and that both the RRMs and PrLD are required not only for forming the nuclear speckles but also for the biological function of UBA2c. These results identify a previously unknown flowering repressor and provide insights into the regulation of flowering time.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Motivo de Reconocimiento de ARN
13.
J Integr Plant Biol ; 64(2): 499-515, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34964264

RESUMEN

Adenosine triphosphate-dependent chromatin remodeling complexes are important for the regulation of transcription, DNA replication, and genome stability in eukaryotes. Although genetic studies have illustrated various biological functions of core and accessory subunits of chromatin-remodeling complexes in plants, the identification and characterization of chromatin-remodeling complexes in plants is lagging behind that in yeast and animals. Recent studies determined whether and how the Arabidopsis SWI/SNF, ISWI, INO80, SWR1, and CHD chromatin remodelers function in multi-subunit complexes in Arabidopsis. Both conserved and plant-specific subunits of chromatin-remodeling complexes have been identified and characterized. These findings provide a basis for further studies of the molecular mechanisms by which the chromatin-remodeling complexes function in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina , Ensamble y Desensamble de Cromatina , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Plant Cell ; 33(10): 3250-3271, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34270751

RESUMEN

In the INO80 chromatin remodeling complex, all of the accessory subunits are assembled on the following three domains of INO80: N-terminal domain (NTD), HSA domain, and ATPase domain. Although the ATPase and HSA domains and their interacting accessory subunits are known to be responsible for chromatin remodeling, it is largely unknown how the accessory subunits that interact with the INO80 NTD regulate chromatin status. Here, we identify both conserved and nonconserved accessory subunits that interact with the three domains in the INO80 complex in Arabidopsis thaliana. While the accessory subunits that interact with all the three INO80 domains can mediate transcriptional repression, the INO80 NTD and the accessory subunits interact with it can contribute to transcriptional activation even when the ATPase domain is absent, suggesting that INO80 has an ATPase-independent role. A subclass of the COMPASS histone H3K4 methyltransferase complexes interact with the INO80 NTD in the INO80 complex and function together with the other accessory subunits that interact with the INO80 NTD, thereby facilitating H3K4 trimethylation and transcriptional activation. This study suggests that the opposite effects of the INO80 complex on transcription are required for the balance between vegetative growth and flowering under diverse environmental conditions.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Adenosina Trifosfatasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Metilación
15.
J Genet Genomics ; 48(5): 369-383, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34144927

RESUMEN

The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes, but whether they form other types of complexes is unknown. Here, we perform affinity purification followed by mass spectrometry and demonstrate that the Arabidopsis RPD3-type histone deacetylases HDA6 and HDA19 interact with several previously uncharacterized proteins, thereby forming three types of plant-specific histone deacetylase complexes, which we named SANT, ESANT, and ARID. RNA-seq indicates that the newly identified components function together with HDA6 and HDA19 and coregulate the expression of a number of genes. HDA6 and HDA19 were previously thought to repress gene transcription by histone deacetylation. We find that the histone deacetylase complexes can repress gene expression via both histone deacetylation-dependent and -independent mechanisms. In the mutants of histone deacetylase complexes, the expression of a number of stress-induced genes is up-regulated, and several mutants of the histone deacetylase complexes show severe retardation in growth. Considering that growth retardation is thought to be a trade-off for an increase in stress tolerance, we infer that the histone deacetylase complexes identified in this study prevent overexpression of stress-induced genes and thereby ensure normal growth of plants under nonstress conditions.


Asunto(s)
Arabidopsis/fisiología , Histona Desacetilasas/metabolismo , Complejos Multiproteicos/metabolismo , Estrés Fisiológico , Acetilación , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Desacetilasas/genética , Histonas/metabolismo , Fenotipo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas
16.
Plant J ; 107(2): 467-479, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33942410

RESUMEN

Association of RNA polymerase V (Pol V) with chromatin is a critical step for RNA- directed DNA methylation (RdDM) in plants. Although the methylated DNA-binding proteins SUVH2 and SUVH9 and the chromatin remodeler-containing complex DRD1-DMS3-RDM1 are known to be required for the association of Pol V with chromatin, the molecular mechanisms underlying the association of Pol V with different chromatin environments remain largely unknown. Here we found that SUVH9 interacts with FVE, a homolog of the mammalian retinoblastoma-associated protein, which has been previously identified as a shared subunit of the histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci. Compared with FVE-independent RdDM target loci, FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than in pericentromeric heterochromatin regions. This study contributes to our understanding of how the association of Pol V with chromatin is regulated in different chromatin environments.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Cromatina/metabolismo , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Factores de Transcripción/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación , Interferencia de ARN , Plantones/metabolismo , Factores de Transcripción/metabolismo
17.
Mol Plant ; 14(7): 1071-1087, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33737195

RESUMEN

The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an evolutionarily conserved histone acetyltransferase complex that has a critical role in histone acetylation, gene expression, and various developmental processes in eukaryotes. However, little is known about the composition and function of the SAGA complex in plants. In this study, we found that the SAGA complex in Arabidopsis thaliana contains not only conserved subunits but also four plant-specific subunits: three functionally redundant paralogs, SCS1, SCS2A, and SCS2B (SCS1/2A/2B), and a TAF-like subunit, TAFL. Mutations in SCS1/2A/2B lead to defective phenotypes similar to those caused by mutations in the genes encoding conserved SAGA subunits HAG1 and ADA2B, including delayed juvenile-to-adult phase transition, late flowering, and increased trichome density. Furthermore, we demonstrated that SCS1/2A/2B are required for the function of the SAGA complex in histone acetylation, thereby promoting the transcription of development-related genes. These results together suggest that SCS1/2A/2B are core subunits of the SAGA complex in Arabidopsis. Compared with SAGA complexes in other eukaryotes, the SAGA complexes in plants have evolved unique features that are necessary for normal growth and development.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Histona Acetiltransferasas/metabolismo , Subunidades de Proteína/análisis , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Plantas Modificadas Genéticamente , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Especificidad de la Especie
18.
J Integr Plant Biol ; 63(4): 787-802, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33433058

RESUMEN

Trimethylated histone H3 lysine 27 (H3K27me3) is a repressive histone marker that regulates a variety of developmental processes, including those that determine flowering time. However, relatively little is known about the mechanism of how H3K27me3 is recognized to regulate transcription. Here, we identified BAH domain-containing transcriptional regulator 1 (BDT1) as an H3K27me3 reader. BDT1 is responsible for preventing flowering by suppressing the expression of flowering genes. Mutation of the H3K27me3 recognition sites in the BAH domain disrupted the binding of BDT1 to H3K27me3, leading to de-repression of H3K27me3-enriched flowering genes and an early-flowering phenotype. We also found that BDT1 interacts with a family of PHD finger-containing proteins, which we named PHD1-6, and with CPL2, a Pol II carboxyl terminal domain (CTD) phosphatase responsible for transcriptional repression. Pull-down assays showed that the PHD finger-containing proteins can enhance the binding of BDT1 to the H3K27me3 peptide. Mutations in all of the PHD genes caused increased expression of flowering genes and an early-flowering phenotype. This study suggests that the binding of BDT1 to the H3K27me3 peptide, which is enhanced by PHD proteins, is critical for preventing early flowering.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación/genética
19.
J Integr Plant Biol ; 63(4): 755-771, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33325122

RESUMEN

In eukaryotes, MEDIATOR is a conserved multi-subunit complex that links transcription factors and RNA polymerase II and that thereby facilitates transcriptional initiation. Although the composition of MEDIATOR has been well studied in yeast and mammals, relatively little is known about the composition of MEDIATOR in plants. By affinity purification followed by mass spectrometry, we identified 28 conserved MEDIATOR subunits in Arabidopsis thaliana, including putative MEDIATOR subunits that were not previously validated. Our results indicated that MED34, MED35, MED36, and MED37 are not Arabidopsis MEDIATOR subunits, as previously proposed. Our results also revealed that two homologous CBP/p300 histone acetyltransferases, HAC1 and HAC5 (HAC1/5) are in fact plant-specific MEDIATOR subunits. The MEDIATOR subunits MED8 and MED25 (MED8/25) are partially responsible for the association of MEDIATOR with HAC1/5, MED8/25 and HAC1/5 co-regulate gene expression and thereby affect flowering time and floral development. Our in vitro observations indicated that MED8 and HAC1 form liquid-like droplets by phase separation, and our in vivo observations indicated that these droplets co-localize in the nuclear bodies at a subset of nuclei. The formation of liquid-like droplets is required for MED8 to interact with RNA polymerase II. In summary, we have identified all of the components of Arabidopsis MEDIATOR and revealed the mechanism underlying the link of histone acetylation and transcriptional regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Histonas/genética , Histonas/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Plantas Modificadas Genéticamente/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...