Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 389, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38730341

RESUMEN

BACKGROUND: Kobreisa littledalei, belonging to the Cyperaceae family is the first Kobresia species with a reference genome and the most dominant species in Qinghai-Tibet Plateau alpine meadows. It has several resistance genes which could be used to breed improved crop varieties. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) is a popular and accurate gene expression analysis method. Its reliability depends on the expression levels of reference genes, which vary by species, tissues and environments. However, K.littledalei lacks a stable and normalized reference gene for RT-qPCR analysis. RESULTS: The stability of 13 potential reference genes was tested and the stable reference genes were selected for RT-qPCR normalization for the expression analysis in the different tissues of K. littledalei under two abiotic stresses (salt and drought) and two hormonal treatments (abscisic acid (ABA) and gibberellin (GA)). Five algorithms were used to assess the stability of putative reference genes. The results showed a variation amongst the methods, and the same reference genes showed tissue expression differences under the same conditions. The stability of combining two reference genes was better than a single one. The expression levels of ACTIN were stable in leaves and stems under normal conditions, in leaves under drought stress and in roots under ABA treatment. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was stable in the roots under the control conditions and salt stress and in stems exposed to drought stress. Expression levels of superoxide dismutase (SOD) were stable in stems of ABA-treated plants and in the roots under drought stress. Moreover, RPL6 expression was stable in the leaves and stems under salt stress and in the stems of the GA-treated plants. EF1-alpha expression was stable in leaves under ABA and GA treatments. The expression levels of 28 S were stable in the roots under GA treatment. In general, ACTIN and GAPDH could be employed as housekeeping genes for K. littledalei under different treatments. CONCLUSION: This study identified the best RT-qPCR reference genes for different K. littledalei tissues under five experimental conditions. ACTIN and GAPDH genes can be employed as the ideal housekeeping genes for expression analysis under different conditions. This is the first study to investigate the stable reference genes for normalized gene expression analysis of K. littledalei under different conditions. The results could aid molecular biology and gene function research on Kobresia and other related species.


Asunto(s)
Genes de Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones , Plantones/genética , Cyperaceae/genética , Estándares de Referencia , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Sequías , Reproducibilidad de los Resultados , Ácido Abscísico/metabolismo , Giberelinas/metabolismo
2.
Int J Endocrinol ; 2024: 8414689, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590929

RESUMEN

Objective: The growing evidence shows that parathyroid hormone (PTH) may affect glucose metabolism. However, the relationship between them is still controversial among diabetic patients. The current study aimed to investigate the relationship between PTH and glucose metabolism in the patients with newly diagnosed type 2 diabetes (T2D). Methods: A total of 532 participants, including 387 patients with newly diagnosed T2D and 145 healthy controls, were recruited in the present study. PTH and metabolic parameters were measured in all participants. Results: The PTH levels were significantly lower in the newly diagnosed T2D patients compared with the control group (35.10 (25.90, 47.20) vs. 47.15 (35.83, 58.65) pg/ml, P < 0.001). The T2D patients with a higher glycated hemoglobin (HbA1c) tertile had lower PTH levels than the patients with a lower HbA1c tertile (32.90 (24.85, 41.40) vs. 37.50 (26.10, 54.55) pg/ml, P < 0.001). Spearman correlation analysis showed that PTH was positively correlated with the body mass index (BMI), fasting insulin (FINS), homeostasis model assessment of ß-cell function (HOMA-ß), and homeostasis model assessment of insulin resistance (HOMA-IR) and negatively correlated with HbA1c, blood calcium (Ca), blood phosphorus (P), and 25-hydroxyvitamin D3 (25-OH-D3). Multiple linear regression analysis demonstrated that PTH was significantly associated with HbA1c (ß = -1.475, P=0.003) and HOMA-ß (ß = 0.090, P=0.001) after adjusting for age, sex, BMI, season, 25-OH-D3, Ca, and P. Conclusion: PTH was negatively correlated with HbA1c in the newly diagnosed T2D patients. Our results suggested that the PTH level within the reference range is related to islet ß-cell function and hyperglycemia.

3.
J Agric Food Chem ; 72(13): 7517-7532, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38527166

RESUMEN

In this study, the molecular mechanisms of iron transport and homeostasis regulated by the Antarctic krill-derived heptapeptide-iron (LVDDHFL-iron) complex were explored. LVDDHFL-iron significantly increased the hemoglobin, serum iron, total iron binding capacity levels, and iron contents in the liver and spleen to normal levels, regulated the gene expressions of iron homeostasis, and enhanced in vivo antioxidant capacity in iron-deficiency anemia mice (P < 0.05). The results revealed that iron ions within LVDDHFL-iron can be transported via the heme transporter and divalent metal transporter-1, and the absorption of LVDDHFL-iron involved receptor-mediated endocytosis. We also found that the transport of LVDDHFL-iron across cells via phagocytosis was facilitated by the up-regulation of the high mobility group protein, heat shock protein ß, and V-type proton ATPase subunit, accompanied by the regulatory mechanism of autophagy. These findings provided deeper understandings of the mechanism of LVDDHFL-iron facilitating iron absorption.


Asunto(s)
Anemia Ferropénica , Euphausiacea , Ratones , Animales , Hierro/metabolismo , Anemia Ferropénica/metabolismo , Hígado/metabolismo , Homeostasis/fisiología
5.
J Obstet Gynaecol Res ; 50(4): 572-579, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38196295

RESUMEN

AIM: The study aimed to identify predictive risk factor to identify high-stage histological chorioamnionitis (HCA) in pregnancies with cervical incompetence (CIC). METHODS: A retrospective cohort study was conducted by including 116 pregnant women with cervical incompetence that required prophylactical and therapeutical cerclage. The histopathology examination on placenta was conducted with informed patient consent. All the cases included in this study were divided based on the severity degree of HCA. The demographic characteristic and the parameters related to maternal and fetal outcome were all analyzed. Besides, perioperative parameters of cerclage, including cervical length, cervical morphology, and laboratory indexes were also compared between two groups. Univariate and multivariate logistic regression analysis were used to determine the risk factor of severe chorioamnionitis. RESULTS: Severe HCA was significantly associated with cervical morphology, cerclage indication, cerclage type, and cervical length measured via ultrasound and vaginal examination. After adjusted for confounders, V-type funneling and short cervix was indicated as independent risk factors of severe HCA by multivariate logistic regression analysis, respectively. CONCLUSIONS: V-type funneling and short cervix may indicate the elevated risk of high-stage HCA. Due to the negative outcomes related with high-stage HCA, appropriate prenatal treatment would improve the pregnancy outcomes in cerclaged population. To facilitate postpartum treatment, placental histological examination should be routinely recommended to identify the high-stage HCA, especially in high risk pregnancies.


Asunto(s)
Cerclaje Cervical , Corioamnionitis , Nacimiento Prematuro , Incompetencia del Cuello del Útero , Embarazo , Femenino , Humanos , Corioamnionitis/patología , Estudios Retrospectivos , Placenta , Resultado del Embarazo/epidemiología , Incompetencia del Cuello del Útero/cirugía , Cuello del Útero/patología , Factores de Riesgo , Nacimiento Prematuro/prevención & control
6.
J Clin Endocrinol Metab ; 109(6): 1517-1525, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38127960

RESUMEN

CONTEXT: Dipeptidyl peptidase-4 (DPP4) is originally described as a surface protein in lymphocytes. Lymphocyte infiltration and subsequent destruction of thyroid tissue have been considered as the central pathological mechanism in Hashimoto thyroiditis (HT). OBJECTIVE: The present study aimed to investigate DPP4 expression in peripheral blood and thyroid tissue in HT patients, and explore the role of DPP4 in the pathophysiological process of HT. METHODS: This case-control study recruited 40 drug-naive HT patients and 81 control individuals. Peripheral blood and thyroid specimens were collected for assessing the expression and activity of DPP4. Moreover, single-cell RNA sequencing (scRNA-seq) analysis of 6 "para-tumor tissues" samples from scRNA-seq data set GSE184362 and in vitro cell experiments were also conducted. RESULTS: The HT patients had similar DPP4 serum concentration and activity as the controls. However, the expression and activity of DPP4 was significantly increased in the thyroid of the HT group than in the control group. The scRNA-seq analysis showed that DPP4 expression was significantly increased in the HT group, and mainly expressed in T cells. Further in vitro studies showed that inhibition of lymphocyte DPP4 activity with sitagliptin downregulated the production of inflammatory factors in co-cultured thyroid cells. CONCLUSION: DPP4 expression was significantly increased in the thyroid of the HT group compared with the control group, and was mainly localized in the lymphocytes. Inhibition of lymphocyte DPP4 activity reduced the production of inflammatory factors in co-cultured thyroid cells. Therefore, inhibition of DPP4 may have a beneficial effect by alleviating inflammatory reactions in HT patients.


Asunto(s)
Dipeptidil Peptidasa 4 , Enfermedad de Hashimoto , Inflamación , Glándula Tiroides , Humanos , Enfermedad de Hashimoto/metabolismo , Enfermedad de Hashimoto/genética , Enfermedad de Hashimoto/sangre , Enfermedad de Hashimoto/patología , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Femenino , Masculino , Estudios de Casos y Controles , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Adulto , Persona de Mediana Edad , Inflamación/metabolismo , Inflamación/genética , Fosfato de Sitagliptina/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología
7.
Diabetol Metab Syndr ; 15(1): 251, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044448

RESUMEN

BACKGROUND: Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduced the risk of cardiovascular and renal outcomes in patients with type 2 diabetes (T2D), but the underlying mechanism has not been well elucidated. The circulating levels of proteins and metabolites reflect the overall state of the human body. This study aimed to evaluate the effect of dapagliflozin on the proteome and metabolome in patients with newly diagnosed T2D. METHODS: A total of 57 newly diagnosed T2D patients were enrolled, and received 12 weeks of dapagliflozin treatment (10 mg/d, AstraZeneca). Serum proteome and metabolome were investigated at the baseline and after dapagliflozin treatment. RESULTS: Dapagliflozin significantly decreased HbA1c, BMI, and HOMA-IR in T2D patients (all p < 0.01). Multivariate models indicated clear separations of proteomics and metabolomics data between the baseline and after dapagliflozin treatment. A total of 38 differentially abundant proteins including 23 increased and 15 decreased proteins, and 35 differentially abundant metabolites including 17 increased and 18 decreased metabolites, were identified. In addition to influencing glucose metabolism (glycolysis/gluconeogenesis and pentose phosphate pathway), dapagliflozin significantly increased sex hormone-binding globulin, transferrin receptor protein 1, disintegrin, and metalloprotease-like decysin-1 and apolipoprotein A-IV levels, and decreased complement C3, fibronectin, afamin, attractin, xanthine, and uric acid levels. CONCLUSIONS: The circulating proteome and metabolome in newly diagnosed T2D patients were significantly changed after dapagliflozin treatment. These changes in proteins and metabolites might be associated with the beneficial effect of dapagliflozin on cardiovascular and renal outcomes.

8.
Nat Food ; 4(9): 788-796, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37696964

RESUMEN

Rice is a staple food for half of the human population, but the effects of diversification on yields, economy, biodiversity and ecosystem services have not been synthesized. Here we quantify diversification effects on environmental and socio-economic aspects of global rice production. We performed a second-order meta-analysis based on 25 first-order meta-analyses covering four decades of research, showing that diversification can maintain soil fertility, nutrient cycling, carbon sequestration and yield. We used three individual first-order meta-analyses based on 39 articles to close major research gaps on the effects of diversification on economy, biodiversity and pest control, showing that agricultural diversification can increase biodiversity by 40%, improve economy by 26% and reduce crop damage by 31%. Trade-off analysis showed that agricultural diversification in rice production promotes win-win scenarios between yield and other ecosystem services in 81% of all cases. Knowledge gaps remain in understanding the spatial and temporal effects of specific diversification practices and trade-offs.


Asunto(s)
Oryza , Humanos , Oryza/genética , Ecosistema , Agricultura , Suelo , Ciclismo
9.
MedComm (2020) ; 4(4): e336, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37502610

RESUMEN

The molecular mechanisms underlying uric acid (UA)-induced mitochondrial dysfunction and apoptosis have not yet been elucidated. Herein, we investigated underlying mechanisms of UA in the development of mitochondrial dysfunction and apoptosis. We analyzed blood samples of individuals with normal UA levels and patients with hyperuricemia. Results showed that patients with hyperuricemia had significantly elevated levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, which may indicate liver or mitochondrial damage in patients with hyperuricemia. Subsequently, lipidomic analysis of mouse liver tissue mitochondria and human liver L02 cell mitochondria was performed. Compared with control group levels, high UA increased mitochondrial phosphatidylserine (PS) and decreased mitochondrial phosphatidylethanolamine (PE) levels, whereas the expression of mitochondrial phosphatidylserine decarboxylase (PISD) that mediates PS and PE conversion was downregulated. High UA levels also inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation as well as mitochondrial respiration, while inducing apoptosis both in vivo and in vitro. Treatment with allopurinol, overexpression of PISD, and lyso-PE (LPE) administration significantly attenuated the three above-described effects in vitro. In conclusion, UA may induce mitochondrial dysfunction and apoptosis through mitochondrial PISD downregulation. This study provides a new perspective on liver damage caused by hyperuricemia.

10.
Nutrients ; 15(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37299473

RESUMEN

Antarctic krill protein-iron complex and peptide-iron complex were acquired to investigate their iron bioavailability, expression of iron-regulated genes, and in vivo antioxidant capacity. Results indicated that the Antarctic krill peptide-iron complex significantly increased the hemoglobin (Hb), serum iron (SI), and iron contents in the liver and spleen in iron-deficiency anemia (IDA) mice (p < 0.05) compared with those of the Antarctic krill protein-iron complex. Despite the gene expressions of the divalent metal transporter 1(DMT1), the transferrin (Tf), and the transferrin receptor (TfR) being better regulated by both Antarctic krill peptide-iron complex and protein-iron complex, the relative iron bioavailability of the Antarctic krill peptide-iron complex group (152.53 ± 21.05%) was significantly higher than that of the protein-iron complex group (112.75 ± 9.60%) (p < 0.05). Moreover, Antarctic krill peptide-iron complex could enhance the antioxidant enzyme activities of superoxidase dismutase (SOD) and glutathione peroxidase (GSH-Px), reduce the malondialdehyde (MDA) level in IDA mice compared with the protein-iron complex, and reduce the cell damage caused by IDA. Therefore, these results indicated that Antarctic krill peptide-iron complex could be used as a highly efficient and multifunctional iron supplement.


Asunto(s)
Anemia Ferropénica , Euphausiacea , Ratones , Animales , Hierro , Antioxidantes/metabolismo , Péptidos/farmacología , Regiones Antárticas
11.
Math Biosci Eng ; 20(2): 1750-1773, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36899507

RESUMEN

In this paper, we investigate the dynamical properties of a stochastic predator-prey model with a fear effect. We also introduce infectious disease factors into prey populations and distinguish prey populations into susceptible prey and infected prey populations. Then, we discuss the effect of Lévy noise on the population considering extreme environmental situations. First of all, we prove the existence of a unique global positive solution for this system. Second, we demonstrate the conditions for the extinction of three populations. Under the conditions that infectious diseases are effectively prevented, the conditions for the existence and extinction of susceptible prey populations and predator populations are explored. Third, the stochastic ultimate boundedness of system and the ergodic stationary distribution without Lévy noise are also demonstrated. Finally, we use numerical simulations to verify the conclusions obtained and summarize the work of the paper.


Asunto(s)
Enfermedades Transmisibles , Modelos Biológicos , Animales , Humanos , Conducta Predatoria , Dinámica Poblacional , Cadena Alimentaria , Ecosistema
12.
J Lipid Res ; 64(3): 100337, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36716821

RESUMEN

Liver function indicators are often impaired in patients with type 2 diabetes mellitus (T2DM), who present higher concentrations of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase than individuals without diabetes. However, the mechanism of liver injury in patients with T2DM has not been clearly elucidated. In this study, we performed a lipidomics analysis on the liver of T2DM mice, and we found that phosphatidylethanolamine (PE) levels were low in T2DM, along with an increase in diglyceride, which may be due to a decrease in the levels of phosphoethanolamine cytidylyltransferase (Pcyt2), thus likely affecting the de novo synthesis of PE. The phosphatidylserine decarboxylase pathway did not change significantly in the T2DM model, although both pathways are critical sources of PE. Supplementation with CDP-ethanolamine (CDP-etn) to increase the production of PE from the CDP-etn pathway reversed high glucose and FFA (HG&FFA)-induced mitochondrial damage including increased apoptosis, decreased ATP synthesis, decreased mitochondrial membrane potential, and increased reactive oxygen species, whereas supplementation with lysophosphatidylethanolamine, which can increase PE production in the phosphatidylserine decarboxylase pathway, did not. Additionally, we found that overexpression of PCYT2 significantly ameliorated ATP synthesis and abnormal mitochondrial morphology induced by HG&FFA. Finally, the BAX/Bcl-2/caspase3 apoptosis pathway was activated in hepatocytes of the T2DM model, which could also be reversed by CDP-etn supplements and PCYT2 overexpression. In summary, in the liver of T2DM mice, Pcyt2 reduction may lead to a decrease in the levels of PE, whereas CDP-etn supplementation and PCYT2 overexpression ameliorate partial mitochondrial function and apoptosis in HG&FFA-stimulated L02 cells.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fosfatidiletanolaminas , Ratones , Animales , Fosfatidiletanolaminas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Etanolaminas/farmacología , Etanolaminas/metabolismo , Hepatocitos/metabolismo , Mitocondrias/metabolismo , Apoptosis , Adenosina Trifosfato/metabolismo
13.
Plant Physiol Biochem ; 194: 15-28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36368222

RESUMEN

Iron nanoparticles (NPs) priming is known to affect the seed germination and seedling growth in many plants. However, whether it has an important role in stimulating the growth of perennial Qinghai-Tibet Plateau plants remains unclear. In this study, the effects of seed priming with different concentrations of nFe2O3 and FeCl3 (10, 50, 100, 500, and 1000 mg L-1) on seed germination, plant growth, photosystem, antioxidant enzyme activities, root morphology, and biomass distribution of Kobresia capillifolia were evaluated under laboratory conditions. The results showed that compared with treatment materials, concentration had more significant effects on K. capillifolia development. There was no significant impact on germination rate were discovered under all treatments, but decreased the seed mildew rate at 100 mg L-1 nFe2O3. Compare with control, Fe-based priming significantly decreased root biomass. All Fe-based treatments increased rubisco activity of leaves, and significantly enhanced Pn at ranged from 10 to 100 mg L-1. Meanwhile, chlorophyll contents were decreased, the chloroplasts were swollen, and thylakoids were disorganized under all Fe treatments. Iron-based priming significantly enhanced SOD, POD, and CAT activities in Kobresia roots. In conclusion, the thick cuticle-covered seed coat of K. capillifolia postponed the penetration of FeNPs into seeds, so FeNPs priming had a weak impact on seed germination. The sustainable release of Fe ions from FeNPs and the uptake of Fe ions by roots affected the physiology, biochemistry and morphology of K. capillifolia. The findings of this study provide an in-depth understanding of how FeNPs impact the alpine meadow plant, K. capillifolia.


Asunto(s)
Carex (Planta) , Cyperaceae , Nanopartículas , Plantones , Hierro/farmacología , Germinación , Antioxidantes/farmacología , Semillas
14.
Crit Rev Food Sci Nutr ; 63(29): 10197-10216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35588258

RESUMEN

Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.


Asunto(s)
Suplementos Dietéticos , Hierro , Humanos , Disponibilidad Biológica , Preparaciones de Acción Retardada , Proteínas , Péptidos , Polisacáridos
15.
J Sci Food Agric ; 103(2): 524-533, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36054511

RESUMEN

BACKGROUND: The contribution and mechanism of κ-/ι-carrageenan (CG) with different hydration characteristics on the gelling properties of shrimp myofibrillar protein (MP) gelation was studied. RESULTS: The gel strength, water-holding capacity and viscoelastic properties of MP gels were significantly enhanced by 1.0% κ-/ι-CG (P < 0.05), but the microstructure showed that excessive carrageenan caused fragmentation of the gel network and a corresponding decrease in gel properties. Compared to MP-ιCG, MP-κCG showed larger breaking force and shorter breaking distance, thus enhancing the hardness and brittleness of the gel, which might be ascribed to a reinforced network skeleton and a tighter binding of κCG-myosin. However, MP-ιCG stabilized more moisture in the gel network, thereby improving the tenderness of the gel, which might be related to the electrostatic repulsion observed between the sulfate groups of ιCG and the myosin observed by molecular docking. In addition, the ß-sheet content and intermolecular interactions might be positively correlated with gel properties. CONCLUSION: In this study, a composite gel system was constructed based on the interaction of MP and CG. The quality differences of two kinds of CG-MP gels were clarified, which will provide guidance for the application of different kinds of carrageenan and the development of recombinant meat products with specific quality. © 2022 Society of Chemical Industry.


Asunto(s)
Coloides , Proteínas , Carragenina/química , Simulación del Acoplamiento Molecular , Geles/química , Miosinas , Reología
16.
Front Plant Sci ; 14: 1264698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264026

RESUMEN

Soil salinization is a common environmental problem that seriously threatens crop yield and food security, especially through its impact on seed germination. Nanoparticle priming, an emerging seed treatment method, is receiving increasing attention in improving crop yield and stress resistance. This study used alfalfa seeds as materials to explore the potential benefits of cerium oxide nanoparticle (CeO2NP) priming to promote seed germination and improve salt tolerance. CeO2NPs at concentrations up to 500 mg/L were able to significantly alleviate salt stress in alfalfa seeds (200 mM), with 50 mg/L of CeO2NP having the best effect, significantly (P< 0.05) increasing germination potential (from 4.0% to 51.3%), germination rate (from 10.0% to 62.7%), root length (from 8.3 cm to 23.1 cm), and seedling length (from 9.8 cm to 13.7 cm). Priming treatment significantly (P< 0.05) increased seed water absorption by removing seed hardness and also reducing abscisic acid and jasmonic acid contents to relieve seed dormancy. CeO2NP priming increased α-amylase activity and osmoregulatory substance level, decreased reactive oxygen species and malonaldehyde contents and relative conductivity, and increased catalase enzyme activity. Seed priming regulated carotenoid, zeatin, and plant hormone signal transduction pathways, among other metabolic pathways, while CeO2NP priming additionally promoted the enrichment of α-linolenic acid and diterpenoid hormone metabolic pathways under salt stress. In addition, CeO2NPs enhanced α-amylase activity (by 6.55%) in vitro. The optimal tested concentration (50 mg/L) of CeO2NPs was able to improve the seed vigor, enhance the activity of α-amylase, regulate the osmotic level and endogenous hormone levels, and improve the salt tolerance of alfalfa seeds. This study demonstrates the efficacy of a simple seed treatment strategy that can improve crop stress resistance, which is of great importance for reducing agricultural costs and promoting sustainable agricultural development.

17.
Anal Chem ; 94(44): 15280-15287, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36278923

RESUMEN

Nano-/microplastics (NMPs, particle diameter < 5 mm) are widespread emerging pollutants causing diverse impacts on organisms due to their sizes, shapes, and chemical properties. Despite the fast increase in NMP research, an effective method to separate and identify NMP types from environmental samples is still lacking. Here, we developed a simple and effective approach for the non-destructive extraction and separation of various types of NMPs from environmental samples by density gradient ultracentrifugation (DGU). For the first time, DGU was capable to separate various NMPs from the complex matrix with high selectivity (100%), purity (93%), and applicability. Through a gradually changing density of the density gradient medium by changing the concentrations or volumes of CsCl/water solution (from 0.00065 to 0.01989 g cm-3 mm-1), various NMPs (with particle sizes as little as 50 nm) could be extracted and separated from soil samples with high recovery (78.5-96.0%). We confirmed the effectiveness and compatibility of DGU through a correct identification of all types of NMPs separated from artificial soil samples with Raman spectroscopy, simultaneous thermal analysis (STA), and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). DGU is compatible with all analytical processes compared to other existing methods with much less sample pretreatment time (0.5 h). Overall, DGU is an effective and cheap method (2.2 USD/sample) to separate NMPs from environmental samples such as soil and water and, hence, can facilitate research on NMPs related to terrestrial and marine environments as well as human health.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Suelo , Agua/análisis , Ultracentrifugación
18.
Trends Ecol Evol ; 37(10): 819-822, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35918209

RESUMEN

Agricultural diversification is proposed as a solution to achieve food security and sustainability in intensified agriculture, but a large-scale policy implementation is lacking. As a leading agricultural producer, the integration of diversification in major policies in China could provide an important example of how to facilitate a sustainable food system transformation globally.


Asunto(s)
Agricultura , Políticas , China
19.
BMC Plant Biol ; 22(1): 323, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790925

RESUMEN

The application of nanotechnology in agriculture can remarkably improve the cultivation and growth of crop plants. Many studies showed that nanoparticles (NPs) made plants grow more vigorously. Light can make NPs aggregated, leading to the reduction of the NPs toxicity. In addition, treatment with NPs had a "hormesis effect" on plants. In this study, light-induced silver nanoparticles (AgNPs) were synthesized by using the alfalfa (Medicago sativa L.) extracts, and then the optimal synthetic condition was determined. Light-induced AgNPs were aggregated, spherical and pink, and they were coated with esters, phenols, acids, terpenes, amino acids and sugars, which were the compositions of alfalfa extracts. The concentration of free Ag+ was less than 2 % of the AgNPs concentration. Through nanopriming, Ag+ got into the seedlings and caused the impact of AgNPs on alfalfa. Compared with the control group, low concentration of light-induced AgNPs had a positive effect on the photosynthesis. It was also harmless to the leaf cells, and there was no elongation effect on shoots. Although high concentration of AgNPs was especially beneficial to root elongation, it had a slight toxic effect on seedlings due to the accumulation of silver. With the increase of AgNPs concentration, the content of silver in the seedlings increased and the silver enriched in plants was at the mg/kg level. Just as available research reported the toxicity of NPs can be reduced by using suitable synthesis and application methods, the present light induction, active material encapsulation and nanopriming minimized the toxicity of AgNPs to plants, enhancing the antioxidant enzyme system.


Asunto(s)
Nanopartículas del Metal , Plata , Medicago sativa/metabolismo , Nanopartículas del Metal/química , Plantones/metabolismo , Plata/química , Nitrato de Plata/farmacología
20.
Biochem Biophys Res Commun ; 617(Pt 2): 55-61, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35696777

RESUMEN

The molecular mechanisms of uric acid (UA)-induced liver injury has not been clearly elucidated. In this study, we aimed to investigate the effect and action mechanisms of UA in liver injury. We analyzed the damaging effect of UA on mouse liver and L02 cells and subsequently performed metabolomics studies on L02 cells to identify abnormal metabolic pathways. Finally, we verified transcription factors that regulate related metabolic enzymes. UA directly activated the hepatic NLRP3 inflammasome and Bax apoptosis pathway invivo and invitro. Related metabolites in the arginine biosynthesis pathway (or urea cycle), l-arginine and l-argininosuccinate were decreased, and ammonia was increased in UA-stimulated L02 cells, which was mediated by carbamoyl phosphate synthase 1 (CPS1), argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) downregulation. UA upregulated hypoxia inducible factor-1alpha (HIF-1α) invivo and invitro, and HIF-1α inhibition alleviated the UA-induced ASS downregulation and hepatocyte injury. In conclusion, UA upregulates HIF-1α and inhibits urea cycle enzymes (UCEs). This leads to liver injury, with evidence of hepatocyte inflammation, apoptosis and oxidative stress.


Asunto(s)
Hiperuricemia , Animales , Arginina/metabolismo , Argininosuccinato Sintasa , Hepatocitos/metabolismo , Humanos , Hiperuricemia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hígado/metabolismo , Ratones , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...