Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 19(21): e2300182, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36828796

RESUMEN

Nanofeatured polyaniline (PANI) electrodes have demonstrated impressive sensing performance due to the enhanced electrolyte diffusion and ion transport. However, the retaining of these nanostructures on substrates via electrophoretic deposition (EPD) faces an insurmountable challenge from the involved dedoping process. Here, camphorsulfonic acid is utilized with high steric effects to dope PANI (PANI-CSA) that can be directly used EPD without involving a dedoping process. Five different nanofeatures (sea cucumber-like, nanofiber, amorphous, nanotube, and nanorod) are synthesized, and they have been all successfully transferred onto indium tin oxide substrate in a formic acid/acetonitrile system, namely a morphology memory effect. The mechanism of retaining these nanofeatures is revealed, which is realized via the processes of dissolution of PANI-CSA, codoping and solvation, and reassembly of basic units into the original nanofeature. The enhanced protonation level by the codoping of formic acid and solvation of acetonitrile plays the key role in retaining these nanofeatures. This method is also applicable to transfer PANI/gold nanorod composites (PANI-CSA/AuNRs). The PANI-CSA/AuNRs electrode as an ascorbic acid sensor has shown an excellent sensing performance with a sensitivity up to 872.7 µA mm-1 cm-2 and a detection limit of as low as 0.18 × 10-6 m.

2.
Polymers (Basel) ; 14(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015546

RESUMEN

The poor compatibility between the polymer matrix and complex modification processes greatly affects the excellent tribological properties of graphene in the polymer matrix. In this study, a covalent organic framework (COF)-coated graphene hybrid lubricating filler (G/COFs) was synthesized in situ using a sample one-step mechanochemical synthesis process. This was used to improve the tribological properties of bismaleimide (BMI) resin. The morphology and microstructure of the G/COFs hybrid were characterized, and the effect of the added amount on the tribological properties of the G/COFs/BMI composites was studied. The results showed that the G/COFs hybrid could improve the stability of the friction coefficient and decrease the volume wear rate of BMI composites. Compared to the neat BMI, the 0.6 wt% G/COFs/BMI composites showed optimal tribological performance, with the friction coefficient and volume wear rate decreasing from 0.35 to 0.14 and from 48 × 10-6 to 10.6 × 10-6 mm3/(N‧m), respectively. In addition, the G/COFs/BMI composites showed lower friction coefficient fluctuations and volume wear rates than G/BMI composites. This is mainly attributed to the fact that the deposition of COFs can not only effectively prevent the aggregation of graphene nanosheets, but can also significantly improve the compatibility and interfacial bond between the graphene and BMI matrix. Moreover, the good synergistic effect between the lamellar COFs and graphene nanosheets can generate high-quality self-lubricating transfer films during the friction process. The excellent dispersibility, efficient chemical functionalization, better friction reduction and wear-resistance properties, and facile preparation method make graphene/COFs hybrid nanoparticles promising as an excellent lubricating filler.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...