Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Anal Methods ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39219465

RESUMEN

Temperature-responsive yeast cell-imprinted sensors (CIPs/AuNPs/Ti3C2Tx/AuNPs/Au) were prepared based on fluorescein isothiocyanate labeled yeast cells (FITC-yeast) via metal-free visible-light-induced atom transfer radical polymerization (MVL ATRP). Here, N-isopropyl acrylamide (NIPAM) was used as a temperature-responsive functional monomer, α-methacrylic acid (MAA) was chosen as an auxiliary functional monomer, N,N'-methylene bisacrylamide (MBA) was used as a cross-linker, and FITC-yeast was selected as both a template and photocatalyst. Under the optimal conditions, the detection range of the yeast cell-imprinted sensor toward yeast cells was 1.0 × 102 to 1.0 × 109 cells per mL, and the detection limit was 11 cells per mL (S/N = 3), with a linear equation of ΔI (µA) = 8.44 log[C (cells per mL)] + 7.62 (R2 = 0.993). The sensor showed good selective recognition in the presence of interfering substances such as autolyzed yeast cells (AY), dead yeast cells (DY), human mammary epithelial cells (MCF-10A), human breast cancer cells (MCF-7) and Escherichia coli (EC). The sensor also had good consistency and reproducibility. Finally, spiked recovery experiments were performed to investigate the recognition of yeast cells in the actual sample using the yeast cell-imprinted sensor. The spiked recoveries were all in the range of 98.5-108.0%, and the RSD values were all less than 4%, indicating that the sensor had good application prospects.

2.
J Am Heart Assoc ; : e033221, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248272

RESUMEN

BACKGROUND: Diagnosis of the cause of cerebral thrombi is vital for recurrence prevention but also challenging. The presence of the microbiome has recently been confirmed in thrombus, suggesting a novel approach to distinguish cerebral thrombi of different origins. However, little is known about whether there is heterogeneity in microbiological colonization of cerebral thrombi of different sources. METHODS AND RESULTS: Forty patients experiencing acute ischemic stroke were included and clinical data were collected. Metagenomic next-generation sequencing was adopted to detect bacterial and genomic signatures of human cerebral thrombi samples. We found similar species diversity between the large-artery atherosclerosis thrombi and cardioembolic thrombi but different species composition and distribution of cerebral thrombus microbiota. Compared with the group with cardioembolism, the group with large-artery atherosclerosis showed a significantly higher relative abundance of Ralstonia insidiosa among the top 10 bacterial species in cerebral thrombi. Twenty operational taxonomy units were correlated with 11 clinical indicators of ischemic stroke. The Gene Ontology enrichment analysis revealed 9 different enriched biological processes (translation and carbohydrate metabolic process, etc). The enriched Kyoto Encyclopedia of Genes and Genomes pathways included ribosome, butanoate metabolism, and sulfur metabolism. CONCLUSIONS: This study, based on the approach of metagenomic next-generation sequencing, provides a diagnostic microbiological method to discriminate individuals with cardioembolic thrombi from those with large-artery atherosclerosis thrombi with human cerebral thrombi samples. Our findings provide a fresh perspective on microbial heterogeneity of cerebral thrombi and demonstrate biological processes and pathway features of cerebral thrombi.

3.
Games Health J ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093839

RESUMEN

The primary goal of this meta-analysis is to explore the five factors of knowledge, teamwork, learning satisfaction, anxiety, and interprofessional ability to determine the value of escape rooms in medical education. Up to January 2023, we searched ScienceDirect, Scopus, PubMed, Embase, Web of Science, CNKI, and the Cochrane Library for pertinent works in either English or Chinese. The Risk of Bias 2 (RoB 2) tool and Newcastle-Ottawa Scale (NOS) were used to assess the quality of studies. Subgroup and sensitivity analyses were used to assess statistical heterogeneity, and I2 was used to measure it. Overall, escape rooms had a more significant positive effect than traditional learning on knowledge (standardized mean difference [SMD]: 0.84; 95% confidence interval [CI]: 0.36-1.33), teamwork (SMD: 4.91; 95% CI: 4.58-5.24), learning satisfaction (MD: 0.36; 95% CI: 0.08-0.64), and interprofessional ability (SMD: 1.04, 95% CI: 0.81-1.27). Moreover, the impact of escape rooms on anxiety also had significant effects (SMD: -8.23, 95% CI: -11.64 to -4.82). Escape rooms affect medical students' knowledge, teamwork, learning satisfaction, interprofessional ability, and anxiety. The findings of this study can be used as evidence that escape rooms is a more effective method than traditional teaching for improving active learning.

4.
Sci Total Environ ; 950: 175367, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127200

RESUMEN

Wetlands are sources and sinks for nanoplastics (NPs), where adsorption and uptake by plants constitute a crucial pathway for NPs accumulation. This study found that Sphagnum exhibited a high potential (~89.75 %) to intercept NPs despite the lack of root systems and stomata. Two pathways for 100nm polystyrene NPs accumulation in Sphagnum were located: (i) Spiral interception and foliar adsorption. Efficient adsorption is credited to the micro/nano-interlocked leaf structure, which is porous, hydrophilic and rough. (ii) Intracellular enrichment through pores. Fluorescence tracking indicates pseudo-leaves (lateral > cephalic branches) as primary organs for internalization. Accumulation of differently functionalized NPs was characterized: PS-Naked-NPs (PS), PS-COOH-NPs (PC) and PS-NH2-NPs (PN) were all largely retained by pathway (i), while pathway (ii) mainly uptake PN and PC. Unlike PS aggregation in transparent cells, PC enrichment in chloroplast cells and PN in intercellular spaces reduced pigment content and fluorescence intensity. Further, the effects of the accumulated NPs on the ecological functions of Sphagnum were evaluated. NPs reduce carbon flux (assimilation rate by 57.78 %, and respiration rate by 33.50%), significantly decreasing biomass (PS = 13.12 %, PC = 26.48 %, PN = 35.23 %). However, toxicity threshold was around 10 µg/mL, environmental levels (≤1 µg/mL) barely affected Sphagnum. This study advances understanding of the behavior and fate of NPs in non-vascular plants, and provides new perspectives for developing Sphagnum substrates for NPs interception.


Asunto(s)
Poliestirenos , Sphagnopsida , Humedales , Adsorción , Nanopartículas , Contaminantes Químicos del Agua
5.
Patient Educ Couns ; 129: 108397, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39190988

RESUMEN

OBJECTIVES: To examine the impact of the interaction between cognitive function and patient activation on self-management behaviors among COPD patients. METHODS: We conducted a study of 331 COPD patients. Cognitive function and patient activation were evaluated at baseline, relevant information on social demography and diseases was collected simultaneously. The primary outcome was self-management behaviors. We performed a multiple logistic regression analysis to evaluate the interaction between cognitive function and patient activation. RESULTS: We found the interaction between mild cognitive impairment (MCI) and low patient activation on poor self-management behaviors was multiplicative. The proportion of participants with high patient activation was lower than those with low patient activation among patients with MCI. The incidence of poor self-management behaviors in patients with normal cognition differed significantly between participants with different activation levels (90.2 % vs.31.3 % vs.9.7 %). However, the difference was small in those with MCI (94 % vs. 73.5 % vs. 84.5). Notably, poor self-management behaviors were high among patients with MCI, regardless of their activation level. CONCLUSIONS: Patients with COPD are more likely to have poor self-management behaviors when MCI and low patient activation coexist, and it was difficult to be activated for patients with MCI. PRACTICE IMPLICATIONS: The assessment of cognitive function is crucial for patients with COPD, especially those with low activation.

6.
Opt Lett ; 49(17): 4863-4866, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39207983

RESUMEN

High-quality microresonators can greatly enhance light-matter interactions and are excellent platforms for studying nonlinear optics. Wavelength conversion through nonlinear processes is the key to many applications of integrated optics. The stimulated Raman scattering (SRS) process can extend the emission wavelength of a laser source to a wider range. Lithium niobate (LN), as a Raman active crystalline material, has remarkable potential for wavelength conversion. Here, we demonstrate the generation of cascaded multi-phonon Raman signals near the second-harmonic generation (SHG) peak in an X-cut thin-film lithium niobate (TFLN) microdisk. Fine tuning of the specific cascaded Raman spectral lines has also been made by changing the pump wavelength. Raman lines can reach a wavelength up to about 80 nm away from the SHG signal. We realize the SFG process associated with Raman signals in the visible range as well. Our work extends the use of WGM microresonators as effective optical upconversion wavelength converters in nonlinear optical applications.

7.
Biomolecules ; 14(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39199289

RESUMEN

Mastitis typically arises from bacterial invasion, where host cell apoptosis significantly contributes to the inflammatory response. Gram-positive bacteria predominantly utilize the virulence factor lipoteichoic acid (LTA), which frequently leads to chronic breast infections, thereby impacting dairy production and animal husbandry adversely. This study employed LTA to develop models of mastitis in cow mammary gland cells and mice. Transcriptomic analysis identified 120 mRNAs associated with endocytosis and apoptosis pathways that were enriched in the LTA-induced inflammation of the Mammary Alveolar Cells-large T antigen (MAC-T), with numerous differential proteins also concentrated in the endocytosis pathway. Notably, actin-related protein 2/3 complex subunit 3 (ARPC3), actin-related protein 2/3 complex subunit 4 (ARPC4), and the heat shock protein 70 (HSP70) are closely related. STRING analysis revealed interactions among ARPC3, ARPC4, and HSP70 with components of the apoptosis pathway. Histological and molecular biological assessments confirmed that ARPC3, ARPC4, and HSP70 were mainly localized to the cell membrane of mammary epithelial cells. ARPC3 and ARPC4 are implicated in the mechanisms of bacterial invasion and the initiation of inflammation. Compared to the control group, the expression levels of these proteins were markedly increased, alongside the significant upregulation of apoptosis-related factors. While HSP70 appears to inhibit apoptosis and alleviate inflammation, its upregulation presents novel research opportunities. In conclusion, we deduced the development mechanism of ARPC3, ARPC4, and HSP70 in breast inflammation, laying the foundation for further exploring the interaction mechanism between the actin-related protein 2/3 (ARP2/3) complex and HSP70.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Apoptosis , Proteínas HSP70 de Choque Térmico , Lipopolisacáridos , Ácidos Teicoicos , Ácidos Teicoicos/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Animales , Lipopolisacáridos/farmacología , Femenino , Apoptosis/efectos de los fármacos , Ratones , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Bovinos , Mastitis/metabolismo , Mastitis/microbiología , Mastitis/patología , Inflamación/metabolismo , Inflamación/patología , Modelos Animales de Enfermedad , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología
8.
Mikrochim Acta ; 191(9): 538, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145785

RESUMEN

Six biomass carbon dots (BCDs) with adjustable emission from 450 to 680 nm under a single wavelength excitation were successfully synthesized from spinach via solvent control strategy. The obtained BCDs show blue, green, yellow, violet, pink, and red emission with high photoluminescence quantum yield (PLQY = 12.68 ~ 30.77%). Detailed characterizations disclose that the tunable-emission mechanism is caused by the synergistic effect of carbon conjugate and surface oxidation degree. Meanwhile, full-color photoluminescence BCDs/PVP powder and BCDs/PVP/PVA films were fabricated by utilizing the prepared BCDs combined with polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA), respectively, which presented excellent high-level information encryption application. Importantly, multi-color and white light-emitting diode (LED) with Commission Internationale de L' Eclairage (CIE) of blue (0.25, 0.29); green (0.25, 0.31); yellow (0.42, 0.45); red (0.52, 0.31); and white (0.32, 0.31) were achieved by only using our prepared BCDs. This work provides a valuable strategy of preparing multi-color BCDs using readily available biomass materials and paves a way for high-level information encryption and LED applications.

9.
J Hazard Mater ; 479: 135670, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39213769

RESUMEN

Microalgae-bacteria consortia (MBC) system has been shown to enhance the efficiency of microalgae in wastewater treatment, yet its effectiveness in treating levofloxacin (LEV) wastewater remains unexplored. This study compared the treatment of LEV wastewater using pure Chlorella pyrenoidosa (PA) and its MBC constructed with activated sludge bacteria. The results showed that MBC improved the removal efficiency of LEV from 3.50-5.41 % to 33.62-57.20 % by enhancing the growth metabolism of microalgae. The MBC increased microalgae biomass and extracellular polymeric substance (EPS) secretion, yet reduced photosynthetic pigment content compared to the PA. At the phylum level, Proteobacteria and Actinobacteriota are the major bacteria in MBC. Furthermore, the transcriptome reveals that the growth-promoting effects of MBC are associated with the up-regulation of genes encoding the glycolysis, the citrate cycle (TCA cycle), and the pentose phosphate pathway. Enhanced carbon fixation, coupled with down-regulation of photosynthetic electron transfer processes, suggests an energy allocation mechanism within MBC. The up-regulation of porphyrin and arachidonic acid metabolism, along with the expression of genes encoding LEV-degrading enzymes, provides evidence of MBC's superior tolerance to and degradation of LEV. Overall, these findings lead to a better understanding of the underlying mechanisms through which MBC outperforms PA in treating LEV wastewater.

10.
Chemosphere ; 363: 142798, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977246

RESUMEN

The use of nanocatalytic particles for the removal of refractory organics from wastewater is a rapidly growing area of environmental purification. However, little has been done to investigate the effects of nanoparticles on soil-plant systems with antibiotic contamination. This work assessed the effect of molybdenum disulfide (MoS2) on the soil-Phragmites communis system containing levofloxacin (LVX). The results showed that the addition of MoS2 had restoration potential for stressed plant. The MoS2 with catalytic activity promoted the transformation of LVX in rhizosphere soils. The transformation pathways of LVX in the different exposure groups were proposed. The continuous output of radicals in the high MoS2 dosage group facilitated the transformation of LVX to small molecule compounds, which were eventually mineralized. Moreover, the electron-density-difference analysis revealed the easier flow of electrons from the MoS2 surface towards the LVX molecules. This finding provides theoretical support for the application of nanocatalytic particles in ecological environments.


Asunto(s)
Disulfuros , Levofloxacino , Molibdeno , Nanopartículas , Contaminantes del Suelo , Suelo , Levofloxacino/química , Molibdeno/química , Disulfuros/química , Suelo/química , Nanopartículas/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Antibacterianos/química , Poaceae , Rizosfera , Catálisis
11.
Chemosphere ; 362: 142674, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908443

RESUMEN

Triclocarban (TCC), an emerging contaminant in water environments, its effects on freshwater biofilms remain insufficiently understood. This study investigates the effects of TCC exposure (at concentrations of 10 µg L-1 and 10 mg L-1) on mature freshwater biofilms. TCC was found to inhibit biofilm activity as evidenced by changes in surface morphology and the ratio of live/dead cells. Moreover, both concentrations of TCC were observed to modify the structure of the biofilm community. Metabolomics analysis revealed an overlap in the toxicity mechanisms and detoxification strategies triggered by various concentrations of TCC in biofilms. However, the higher toxicity induced by 10 mg L-1 TCC resulted from the downregulation of proline betaine, disrupting the homeostasis of cellular osmotic pressure regulation in biofilms. Notably, lipid and lipid-like molecules showed high sensitivity to different concentrations of TCC, indicating their potential as biomarkers for TCC exposure. Annotation of the differential metabolites by KEGG revealed that alterations in amino acid and carbon metabolism constituted the primary response mechanisms of biofilms to TCC. Moreover, the biofilm demonstrated enhanced nucleic acid metabolism, which bolstered resistance against TCC stress and heightened tolerance. Furthermore, elevated TCC concentrations prompted more robust detoxification processes for self-defense. Overall, short-term exposure to TCC induced acute toxicity in biofilms, yet they managed to regulate their community structure and metabolic levels to uphold oxidative homeostasis and activity. This research contributes to a deeper comprehension of TCC risk assessment and policy control in aquatic environments.


Asunto(s)
Biopelículas , Carbanilidas , Agua Dulce , Microbiota , Contaminantes Químicos del Agua , Biopelículas/efectos de los fármacos , Carbanilidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microbiota/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metabolómica
12.
Neuroreport ; 35(12): 790-799, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38935066

RESUMEN

Central retinal artery occlusion (CRAO) is a serious eye condition that poses a risk to vision, resulting from the blockage of the central retinal artery. Because of the anatomical connection between the ocular artery, which derives from the internal carotid artery, and the anterior middle cerebral artery, hemodynamic alterations and sudden vision loss associated with CRAO may impact brain functionality. This study aimed to examine alterations in spontaneous neural activity among patients with CRAO by resting-state functional MRI. In addition, we selected the amplitude of low-frequency fluctuation (ALFF) and fractional amplitude of low-frequency fluctuation (fALFF) values as classification features for distinguishing CRAO from healthy controls (HCs) using a support vector machine classifier. A total of 18 patients diagnosed with CRAO and 18 HCs participated in the study. Resting-state brain function images and structural images were acquired from both groups. Aberrant changes in spontaneous brain functional activity among CRAO patients were investigated utilizing ALFF and fALFF analysis methods. Group differences in ALFF/fALFF values were assessed through a two-sample t -test. Subsequently, a machine learning classifier was developed to evaluate the clinical diagnostic potential of ALFF and fALFF values. In comparison to HCs, individuals with CRAO exhibited significantly higher ALFF values in the left cerebellum_6, vermis_7, left superior frontal gyrus, and left inferior frontal gyrus, triangular part. Conversely, the CRAO group displayed notably lower ALFF values in the left precuneus and left median cingulum gyri. Furthermore, higher fALFF values were observed in the left inferior frontal gyrus, triangular part, whereas lower fALFF values were noted in the right cerebellum_Crus2, left precuneus, right angular gyrus, left angular gyrus, right supramarginal gyrus, right superior parietal gyrus, and left precuneus. Utilizing the ALFF/fALFF values, the receiver operating characteristic curves (area under the curve) yielded 0.99 and 0.94 through machine learning analysis techniques. CRAO patients exhibit atypical neural activity in the brain, characterized by ALFF and fALFF values predominantly localized in the frontal, parietal, and cerebellar regions, which are closely linked to visual cognition and motor control impairments. Furthermore, ALFF and fALFF could serve as potential neuroimaging markers beyond the orbit among CRAO.


Asunto(s)
Encéfalo , Aprendizaje Automático , Imagen por Resonancia Magnética , Oclusión de la Arteria Retiniana , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Oclusión de la Arteria Retiniana/diagnóstico por imagen , Oclusión de la Arteria Retiniana/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Adulto , Descanso , Anciano , Mapeo Encefálico/métodos , Máquina de Vectores de Soporte
13.
Anal Chim Acta ; 1307: 342640, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719417

RESUMEN

BACKGROUND: The analysis of cell membrane permeability plays a crucial role in improving the procedures of cell cryopreservation, which will affect the specific parameter settings in loading, removal and cooling processes. However, existing studies have mostly focused on deriving permeability parameters through osmotic theoretical models and cell volume response analysis, and there is still a lack of the direct experimental evidence and analysis at the single-cell level regarding the migration of cryoprotectants. RESULTS: In this work, a side perfusion microfluidics chips combined with Raman spectroscopy system was built to monitor in situ the Raman spectroscopy of extracellular and intracellular solution during loading and elution process with different cryoprotectant solution systems (single and dual component). And it was found that loading a high concentration cryoprotectant solution system through a single elution cycle may result in significant residual protective agent, which can be mitigated by employing a multi-component formula but multiple elution operations are still necessary. Furthermore, the collected spectral signals were marked and analyzed to was perform preliminary relative quantitative analysis. The results showed that the intracellular concentration changes can be accurately quantified by the Raman spectrum and are closely related to the extracellular solution concentration changes. SIGNIFICANCE AND NOVELTY: By using the method of small flow perfusion (≤20 µL/min) in the side microfluidic chip after the gravity sedimentation of cells, the continuous loading and elution process of different cryoprotectants on chip and the spectral acquisition can be realized. The intracellular and extracellular concentrations can be quantified in situ based on the ratio of spectral peak intensities. These results indicate that spectroscopic analysis can be used to effectively monitor intracellular cryoprotectant residues.


Asunto(s)
Crioprotectores , Análisis de la Célula Individual , Espectrometría Raman , Espectrometría Raman/métodos , Crioprotectores/química , Crioprotectores/farmacología , Crioprotectores/aislamiento & purificación , Dispositivos Laboratorio en un Chip , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Criopreservación/métodos , Animales
14.
Angew Chem Int Ed Engl ; 63(33): e202407059, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38758985

RESUMEN

Unexpectedly facile dearomative intramolecular (4+3) cycloadditions of thiophenes with epoxy enolsilanes, providing sulfur-bridged cycloadducts, are reported. A total of fifteen thiophene substrates have been found to undergo (4+3) cycloaddition smoothly to produce endo and exo (4+3) adducts in yields of up to 83 % with moderate to good diastereoselectivity. Complete conservation of enantiomeric purity was observed when the optically enriched epoxide was used. The desulfurizing transformations of the sulfur-bridged skeleton of the cycloadducts provide functionalized 6,7-fused bicyclic frameworks consisting of 1,3-cycloheptadiene subunits. Density functional theory calculations reveal the origins of the facile dearomatization of thiophenes in these (4+3) cycloadditions.

15.
Adv Healthc Mater ; 13(20): e2400400, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769944

RESUMEN

Vascular dementia (VaD) is the second most common form of dementia worldwide. Oxidative stress and neuroinflammation are important factors contributing to cognitive dysfunction in patients with VaD. The antioxidant and anti-inflammatory properties of hydrogen are increasingly being utilized in neurological disorders, but conventional hydrogen delivery has the disadvantage of inefficiency. Therefore, magnesium silicide nanosheets (MSNs) are used to release hydrogen in vivo in larger quantities and for longer periods of time to explore the appropriate dosage and regimen. In this study, it is observed that hydrogen improved learning and working memory in VaD rats in the Morris water maze and Y-maze, which elicits improved cognitive function. Nissl staining of neurons shows that hydrogen treatment significantly improves edema in neuronal cells. The expression and activation of reactive oxygen species (ROS), Thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), caspase-1, and IL-1ß in the hippocampus are measured via ELISA, Western blotting, real-time qPCR, and immunofluorescence. The results show that oxidative stress indicators and inflammasome-related factors are significantly decreased after 7dMSN treatment. Therefore, it is concluded that hydrogen can ameliorate neurological damage and cognitive dysfunction in VaD rats by inhibiting ROS/NLRP3/IL-1ß-related oxidative stress and inflammation.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Modelos Animales de Enfermedad , Hidrógeno , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Ratas Sprague-Dawley , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo/efectos de los fármacos , Inflamasomas/metabolismo , Hidrógeno/farmacología , Hidrógeno/química , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Ratas , Masculino , Especies Reactivas de Oxígeno/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos
16.
Environ Pollut ; 353: 124168, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761878

RESUMEN

Multiple odour nuisance in livestock farming is a notorious problem that has a significant impact on the living environment of surrounding communities. Adsorbents based on metal-organic framework (MOF) materials show great promise for controlling odour pollution, as they offer a high specific surface area, a controllable structure and an abundance of active sites. However, the MOF formation process is prone to problems such as pore clogging or collapse and reduced porosity, which limits its further application. In this study, a series of odour adsorbents were prepared by in situ growth of NH2-UiO-66 on tea stem biochar (TSBC) using a hydrothermal method and named UiO (Zr)-TSBCx. The physical and chemical properties and composition of UiO (Zr)-TSBCx have been systematically characterized using SEM, TEM, XRD, FT-IR, N2 adsorption-desorption and XPS. The release of odours from the pig farm effluent was monitored using in-situ continuous Proton-Transfer-Reaction Mass Spectrometry (PTR-MS), and the obtained primary compositions were tested for further adsorption. In dynamic adsorption experiments focused on butyric acid, UiO (Zr)-TSBC2 showed a high adsorption capacity of 3.99 × 105 µg/g and exceptional structural stability. UiO (Zr)-TSBC2 showed variable adsorption efficiencies for different odorous gases, with the best performance for the removal of ammonia, toluene and butyric acid. It also demonstrated the ability to rapidly mitigate instantaneous high concentrations of hydrogen sulfide (H2S), methanethiol and toluene resulting from agitation. Additionally, based on the relationship between the adsorption amount and the structural characteristics of the adsorbent as well as the nature of the odours, a possible adsorption mechanism of UiO (Zr)-TSBC2 for a variety of odours released from pig farm effluent was proposed. This work demonstrates a novel approach to promote deodorization applications in livestock and poultry farming environments by the in-situ growth of NH2-UiO-66 on biochar prepared from tea stem.


Asunto(s)
Carbón Orgánico , Estructuras Metalorgánicas , Odorantes , Carbón Orgánico/química , Adsorción , Estructuras Metalorgánicas/química , Odorantes/análisis , Porosidad , Té/química , Animales , Ácidos Ftálicos
17.
Colloids Surf B Biointerfaces ; 239: 113938, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718474

RESUMEN

Neurologic disorders (NDs) are serious diseases that threaten public health. However, due to the complex pathogenesis and significant individual differences in traditional treatments, specific treatment methods for NDs are still lacking. Exosomes, the smallest extracellular vesicles secreted by eukaryotic cells, are receiving increasing attention in the field of NDs. They contain misfolded proteins related to various NDs, including amyloid-beta, Tau proteins, and α-synuclein, indicating their promising roles in the diagnosis and treatment of NDs. In this review, an overview of the biogenesis, composition, and biological functions of exosomes is provided. Moreover, we summarize their potential roles in the pathogenesis of three prevalent NDs (including Alzheimer's disease, Ischemic stroke, and Parkinson's disease). On this basis, the diagnostic potential and therapeutic value of exosomes carrying various bioactive molecules are discussed in detail. Also, the concerns and perspectives of exosome-based diagnosis and therapy are discussed.


Asunto(s)
Exosomas , Nanoestructuras , Enfermedades del Sistema Nervioso , Exosomas/metabolismo , Exosomas/química , Humanos , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/terapia , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Nanoestructuras/química , Animales , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo
18.
Front Cell Dev Biol ; 12: 1384450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638528

RESUMEN

Gastrointestinal cancers account for approximately one-third of the total global cancer incidence and mortality with a poor prognosis. It is one of the leading causes of cancer-related deaths worldwide. Most of these diseases lack effective treatment, occurring as a result of inappropriate models to develop safe and potent therapies. As a novel preclinical model, tumor patient-derived organoids (PDOs), can be established from patients' tumor tissue and cultured in the laboratory in 3D architectures. This 3D model can not only highly simulate and preserve key biological characteristics of the source tumor tissue in vitro but also reproduce the in vivo tumor microenvironment through co-culture. Our review provided an overview of the different in vitro models in current tumor research, the derivation of cells in PDO models, and the application of PDO model technology in gastrointestinal cancers, particularly the applications in combination with CRISPR/Cas9 gene editing technology, tumor microenvironment simulation, drug screening, drug development, and personalized medicine. It also elucidates the ethical status quo of organoid research and the current challenges encountered in clinical research, and offers a forward-looking assessment of the potential paths for clinical organoid research advancement.

19.
Adv Mater ; 36(27): e2402379, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38655900

RESUMEN

Circulating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its noninvasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here, an ultrastrong ligand, l-histidine-l-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs, is designed. Furthermore, HH is integrated into a cell-imprinted polymer, constructing a hydrogel with precise CTCs imprinting, high elasticity, satisfactory blood compatibility, and robust anti-interference capacities. These features endow the hydrogel with excellent capture efficiency (>95%) for CTCs in peripheral blood, as well as the ability to release CTCs controllably and alive. Clinical tests substantiate the accurate differentiation between liver cancer, cirrhosis, and healthy groups using this method. The remarkable diagnostic accuracy (94%), lossless release of CTCs, material reversibility, and cost-effectiveness ($6.68 per sample) make the HH-based hydrogel a potentially revolutionary technology for liver cancer diagnosis and single-cell analysis.


Asunto(s)
Histidina , Hidrogeles , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Hidrogeles/química , Humanos , Histidina/química , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/diagnóstico , Línea Celular Tumoral , Separación Celular/métodos , Polímeros/química , Impresión Molecular/métodos
20.
Food Chem ; 451: 139403, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653104

RESUMEN

In this study, the impact of three unsaturated fatty acids (Oleic acid: OA, Eicosapentaenoic acid: EPA, Docosahexaenoic acid: DHA) on the oxidation and structure of rainbow trout myofibrillar protein (MP) was explored. The findings revealed a notable increase in carbonyl content (P < 0.05) and a significant decrease in total sulfhydryl content (P < 0.05) of MP with the concentration increase of the three unsaturated fatty acids. Endogenous fluorescence spectroscopy and surface hydrophobicity analyses showed that unsaturated fatty acids can cause unfolding and exposure of hydrophobic groups in MP. In addition, SDS-PAGE showed that disulfide bonds were associated with MP cross-linking and aggregate size induced by unsaturated fatty acids. Overall, three unsaturated fatty acid treatments facilitated the oxidation of myofibrillar proteins, and the extent of protein oxidation was closely associated with the concentration of unsaturated fatty acids.


Asunto(s)
Ácidos Grasos Insaturados , Proteínas de Peces , Proteínas Musculares , Oncorhynchus mykiss , Oxidación-Reducción , Animales , Oncorhynchus mykiss/metabolismo , Ácidos Grasos Insaturados/química , Proteínas de Peces/química , Proteínas Musculares/química , Miofibrillas/química , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA