Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inflammation ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780694

RESUMEN

TIGIT, a co-inhibitory receptor found on T cells and NK cells, transmits inhibitory signals upon binding to its ligand. This interaction suppresses the activation of various signaling pathways, leading to functional exhaustion of cells, ultimately dampening excessive inflammatory responses or facilitating immune evasion in tumors. Dysregulated TIGIT expression has been noted in T cells across different inflammatory conditions, exhibiting varying effects based on T cell subsets. TIGIT predominantly restrains the effector function of pro-inflammatory T cells, upholds the suppressive function of regulatory T cells, and influences Tfh maturation. Mechanistically, the IL27-induced transcription factors c-Maf and Blimp-1 are believed to be key regulators of TIGIT expression in T cells. Notably, TIGIT expression in T cells is implicated in lung diseases, particularly airway inflammatory conditions such as lung cancer, obstructive pulmonary disease, interstitial lung disease, sarcoidosis, and COVID-19. This review emphasizes the significance of TIGIT in the context of T cell immunity and airway inflammatory diseases.

2.
Adv Sci (Weinh) ; 11(20): e2305581, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38488323

RESUMEN

Cardiac function is under neural regulation; however, brain regions in the cerebral cortex responsible for regulating cardiac function remain elusive. In this study, retrograde trans-synaptic viral tracing is used from the heart to identify a specific population of the excitatory neurons in the primary motor cortex (M1) that influences cardiac function in mice. Optogenetic activation of M1 glutamatergic neurons increases heart rate, ejection fraction, and blood pressure. By contrast, inhibition of M1 glutamatergic neurons decreased cardiac function and blood pressure as well as tyrosine hydroxylase (TH) expression in the heart. Using viral tracing and optogenetics, the median raphe nucleus (MnR) is identified as one of the key relay brain regions in the circuit from M1 that affect cardiac function. Then, a mouse model of cardiac injury is established caused by myocardial infarction (MI), in which optogenetic activation of M1 glutamatergic neurons impaired cardiac function in MI mice. Moreover, ablation of M1 neurons decreased the levels of norepinephrine and cardiac TH expression, and enhanced cardiac function in MI mice. These findings establish that the M1 neurons involved in the regulation of cardiac function and blood pressure. They also help the understanding of the neural mechanisms underlying cardiovascular regulation.


Asunto(s)
Modelos Animales de Enfermedad , Corteza Motora , Infarto del Miocardio , Neuronas , Optogenética , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/genética , Ratones , Corteza Motora/metabolismo , Corteza Motora/fisiopatología , Optogenética/métodos , Neuronas/metabolismo , Masculino , Corazón/fisiopatología , Ácido Glutámico/metabolismo , Ratones Endogámicos C57BL , Presión Sanguínea/fisiología
3.
Horm Behav ; 162: 105536, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38522143

RESUMEN

Paternal deprivation (PD) impairs social cognition and sociality and increases levels of anxiety-like behavior. However, whether PD affects the levels of empathy in offspring and its underlying mechanisms remain unknown. The present study found that PD increased anxiety-like behavior in mandarin voles (Microtus mandarinus), impaired sociality, reduced the ability of emotional contagion, and the level of consolation behavior. Meanwhile, PD reduced OT neurons in the paraventricular nucleus (PVN) in both male and female mandarin voles. PD decreased the level of OT receptor (OTR) mRNA in the anterior cingulate cortex (ACC) of male and female mandarin voles. Besides, OTR overexpression in the ACC reversed the PD-induced changes in anxiety-like behavior, social preference, emotional contagion, and consolation behavior. Interference of OTR expression in the ACC increased levels of anxiety-like behaviors, while it reduced levels of sociality, emotional contagion, and consolation. These results revealed that the OTR in the ACC is involved in the effects of PD on empathetic behaviors, and provide mechanistic insight into how social experiences affect empathetic behaviors.

4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365259

RESUMEN

Goats are globally invaluable ruminants that balance food security and environmental impacts, and their commensal microbiome residing in the gastrointestinal tract (GIT) is associated with animal health and productivity. However, the reference genomes and functional repertoires of GIT microbes in goat kids have not been fully elucidated. Herein, we performed a comprehensive landscape survey of the GIT microbiome of goat kids using metagenomic sequencing and binning, spanning a dense sampling regime covering three gastrointestinal compartments spatially and five developmental ages temporally. We recovered 1002 high-quality metagenome-assembled genomes (termed the goat kid GIT microbial catalog [GKGMC]), 618 of which were novel. They encode more than 2.3 million nonredundant proteins, and represent a variety of carbohydrate-degrading enzymes and metabolic gene clusters. The GKGMC-enriched microbial taxa, particularly Sodaliphilus, expanded the microbial tree of life in goat kids. Using this GKGMC, we first deciphered the prevalence of fiber-degrading bacteria for carbohydrate decomposition in the rumen and colon, while the ileal microbiota specialized in the uptake and conversion of simple sugars. Moreover, GIT microorganisms were rapidly assembled after birth, and their carbohydrate metabolic adaptation occurred in three phases of progression. Finally, phytobiotics modified the metabolic cascades of the ileal microbiome, underpinned by the enrichment of Sharpea azabuensis and Olsenella spp. implicated in lactate formation and utilization. This GKGMC reference provides novel insights into the early-life microbial developmental dynamics in distinct compartments, and offers expanded resources for GIT microbiota-related research in goat kids.


Asunto(s)
Cabras , Consorcios Microbianos , Animales , Bacterias , Rumiantes , Carbohidratos
5.
Biology (Basel) ; 12(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37998035

RESUMEN

Ewes undergo complex metabolic changes during pregnancy. Understanding the specific process of these changes is a necessary prerequisite in ewes for regulating and intervening in order to maintain pregnancies. However, there have been relatively few studies on the specific changes that occur in nutritional metabolism in pregnant ewes during early gestation, especially for some landrace ewes in highly cold areas. Therefore, this study aimed to (1) elucidate the changes in metabolites and microbial communities in pregnant ewes during early gestation using metabolomics and 16S ribosomal RNA gene (rDNA) amplicon sequencing approaches, and to (2) discover novel early pregnancy-induced biomarkers in the blood and faeces. Rams were placed together with ewes on D0 and removed on D45. During early gestation, blood and faecal samples were collected from ewes in a highly cold area for analysing the metabolites and microbial communities; these were retrospectively classified as the early gestation pregnant (EP) ewe group or the nonpregnant (NP) ewe group based on the lambing status recorded during the expected delivery period. The differences in the plasma biochemical parameters, plasma metabolites, and faecal microbial communities of pregnant and nonpregnant ewes were characterised. The GC, IL-6, O-acetyl-l-serine, L-glutamine, and 6-acetamido-2-oxohexanoic acid were screened out as potential biomarkers for evaluating the occurrence of early pregnancy. These novel early pregnancy-induced metabolites discovered in ewes might allow for the development of technologies to detect early pregnancies in sheep in highly cold areas.

6.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511364

RESUMEN

Male mammals display different paternal responses to pups, either attacking or killing the young offspring, or contrastingly, caring for them. The neural circuit mechanism underlying the between-individual variation in the pup-directed responsiveness of male mammals remains unclear. Monogamous mandarin voles were used to complete the present study. The male individuals were identified as paternal and infanticidal voles, according their behavioral responses to pups. It was found that the serotonin release in the medial preoptic area (MPOA), as well as the serotonergic neuron activity, significantly increased upon licking the pups, but showed no changes after attacking the pups, as revealed by the in vivo fiber photometry of the fluorescence signal from the 5-HT 1.0 sensor and the calcium imaging indicator, respectively. It was verified that the 5-HTergic neural projections to the MPOA originated mainly from the ventral part of the dorsal raphe (vDR). Furthermore, the chemogenetic inhibition of serotonergic projections from the vDR to the MPOA decreased the paternal behaviors and shortened the latency to attack the pups. In contrast, the activation of serotonergic neurons via optogenetics extended the licking duration and inhibited infanticide. Collectively, these results elucidate that the serotonergic projections from the vDR to the MPOA, a previously unrecognized pathway, regulate the paternal responses of virgin male mandarin voles to pups.


Asunto(s)
Núcleo Dorsal del Rafe , Área Preóptica , Humanos , Animales , Masculino , Área Preóptica/metabolismo , Padre , Conducta Animal/fisiología , Arvicolinae
7.
Genomics ; 115(5): 110680, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37454938

RESUMEN

This study aims to characterize changes in the structure and the molecules related to immune function in the colon mucosa in dairy calves during the weaning transition (weaned at week 6 of age). Colon mucosa thickness, measured at week 5 to 8 and 12 of age, decreased for 2 weeks after weaning, but then recovered. Colon mucosa's transcriptome profiling at week 5, 7, and 12 of age was obtained using RNA-sequencing. Functional analysis showed that pathways related to immune function were up-regulated postweaning. A weighted gene co-expression network analysis identified 17 immune function related genes, expressed higher postweaning, which were negatively correlated with colon mucosa thickness, suggesting that these genes may be involved in colon mucosa inflammation and recovery from mucosa thickness decrement during the weaning transition. As such, it is important to determine the function of immune cells in the colon mucosa during the weaning transition in dairy calves.


Asunto(s)
Colon , Mucosa Intestinal , Animales , Bovinos , Masculino , Destete , Colon/metabolismo , Perfilación de la Expresión Génica , Inmunidad
8.
Genomics ; 115(5): 110664, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37286013

RESUMEN

This study aims to characterize the functional changes of the rumen epithelium associated with ruminal short-chain fatty acid (SCFA) concentration and epithelium-attached microbes during the weaning transition in dairy calves. Ruminal SCFA concentrations were determined, and transcriptome and microbiota profiling in biopsied rumen papillae were obtained from Holstein calves before and after weaning using RNA- and amplicon sequencing. Metabolic pathway analysis showed that pathways related to SCFA metabolism and cell apoptosis were up- and down-regulated postweaning, respectively. Functional analysis showed that genes related to SCFA absorption, metabolism, and protective roles against oxidative stress were positively correlated with ruminal SCFA concentrations. The relative abundance of epithelium-attached Rikenellaceae RC9 gut group and Campylobacter was positively correlated with genes involved in SCFA absorption and metabolism, suggesting that these microbes can cooperatively affect host functions. Future research should examine the contribution of attenuated apoptosis on rumen epithelial functional shifts during the weaning transition.


Asunto(s)
Microbiota , Rumen , Animales , Bovinos , Rumen/metabolismo , Destete , Epitelio/metabolismo , Ácidos Grasos Volátiles/metabolismo , Perfilación de la Expresión Génica
9.
BMC Genomics ; 24(1): 364, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386405

RESUMEN

BACKGROUND: The liver is a principal metabolic organ and has a major role in regulating lipid metabolism. With the development of rapidly fattening livestock in the modern breeding industry, the incidence of hepatic steatosis and accumulation in animals was significantly increased. However, the molecular mechanisms responsible for hepatic lipid metabolic disturbances in a high concentrate diet remain unclear. The objective of this study was to evaluate the effects of increasing concentrate level in a fattening lamb diet on biochemical indices, hepatic triglycerides (TG) concentration, and hepatic transcriptomic profiles. In the present study, 42 weaned lambs (about 3 ± 0.3 months old) were randomly assigned to the GN60 group (60% concentrate of dry matter, GN60, n = 21) or GN70 group (70% concentrate of dry matter, n = 21) for a 3-months feeding trial. RESULTS: No difference was observed in the growth performance or plasma biochemical parameters between the GN60 group and the GN70 group. The hepatic TG concentration was higher in the GN70 group than GN60 group (P < 0.05). Hepatic transcriptomic analysis showed that there were 290 differentially expressed genes identified between GN60 and GN70 groups, with 125 genes up-regulated and 165 genes down-regulated in the GN70 group. The enriched Gene Ontology (GO) items and KEGG pathways and protein-protein interaction (PPI) network of differentially expressed genes (DEGs) revealed that the majority of enriched pathways were related to lipid metabolism. Further analysis revealed that the fatty acid synthesis was up-regulated, while fatty acid transport, oxidation, and TG degradation were down-regulated in the GN70 group when compared with the GN60 group. CONCLUSIONS: These results indicated that GN70 induced excess lipid deposition in the liver of lambs during the fattening period, with high synthesis rates and low degradation rates of TG. The identified mechanisms may help understand hepatic metabolism in lambs with a high concentrate diet and provide insight into decreasing the risk of liver metabolism disorder in animals.


Asunto(s)
Trastornos del Metabolismo de los Lípidos , Metabolismo de los Lípidos , Animales , Dieta/veterinaria , Grano Comestible , Ácidos Grasos , Perfilación de la Expresión Génica , Metabolismo de los Lípidos/genética , Lípidos , Hígado , Fitomejoramiento , Ovinos , Oveja Doméstica
10.
Neuropharmacology ; 230: 109482, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36893984

RESUMEN

Chronic social stress can cause psychological disease. Although oxytocin (OT) has been showed to modulate effects of chronic social defeat stress (CSDS) on emotional and social behaviors, however, how OT circuits mediate effects of CSDS on emotional and social abnormalities remains unclear. Here, we found that repeated intraperitoneal OT administration in the process of CSDS buffered adverse effects of CSDS on emotional and social behaviors in mandarin voles (Microtus mandarinus) of both sexes except no effect on depression-like behavior of males. Repeated OT treatments during CSDS prevented decrease of oxytocin receptors in nucleus accumbens (NAc) in females, but produced no effects on males. Furthermore, using designer receptors exclusively activated by designer drugs (DREADDs)-based chemogenetic tools, we determined that the activation of the paraventricular nucleus (PVN)-the shell of NAc (NAcs) projections before social defeat during CSDS process significantly prevented the increase of the anxiety-like behaviors and social avoidance induced by CSDS in both sexes, and reversed the depressive-like behaviors induced by CSDS only in females. Besides, optogenetic activation of PVN-NAcs projections after CSDS reduced anxiety-like behaviors and increased levels of sociality. Collectively, we suggest that PVN-NAcs projections modulate emotional and social behaviors during or after the process of CSDS sex-specifically, although AAV viruses did not specifically infect OT neurons. These findings offer potential targets for preventing or treating emotional and social disorders induced by chronic stress.


Asunto(s)
Oxitocina , Núcleo Hipotalámico Paraventricular , Femenino , Masculino , Animales , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Accumbens , Derrota Social , Conducta Social , Arvicolinae , Estrés Psicológico/metabolismo
11.
Front Microbiol ; 14: 1093129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937266

RESUMEN

Silybum marianum meal is a by-product that remains silymarin complex and is perceived as a potential-protein source. The potential and its mechanism of silybum marianum meal as a protein supplement in ruminants were evaluated by testing the growth performance, biochemical parameters, cytokine levels, gut transcriptome and microbial community profiles. Forty-two male Hulunbeier growing lambs (aged about 3-month-old; averaged body weight of 21.55 kg) were randomly divided into the CON (with 10% soybean meal) and SIL groups (with 10% silybum marianum meal). There was no significant difference in growth performance, feed intakes, or serum biochemical parameters between CON and SIL. The serum levels of IL-1ß, TNF-α, TGF-ß, HGF, and VEGF were all increased (p < 0.05) in the SIL group as compared with the CON group. Transcriptome gene set enrichment analysis (GSEA) revealed that the core genes in the rumen from SIL group were enriched with fructose and mannose metabolism, while the core genes in the ileum were enriched for three biological process, including digestive tract development, positive regulation of MAPK cascade, and regulation of I-kappaB kinase/NF-kappaB signaling. The 16S rDNA results showed that the relative abundance of Bacteroidetes, Firmicutes, Synergistetes, and Verrucomicrobia in the rumen from SIL group was significantly higher than that in CON group (p < 0.05), whereas Proteobacteria was significantly lower than that in CON group (p < 0.05). The LEfSe analysis showed that the genera Pyramidobacter, Saccharofermentans, Anaerovibrio, Oscillibacter and Barnesiella were enriched in the rumen from SIL group, whereas Sharpea was enriched in the CON group (LDA > 2). In the ileum, there were no significant differences in the phylum-level classification of microbes observed. At the genus level, the relative abundances of Bifidobacterium and Ruminococcus in the ileum from SIL group were significantly higher than that in the CON group (p < 0.05), whereas the relative abundance of Clostridium_XI was lower (p < 0.05). Correlation analysis showed that Clostridium_XI was negatively correlated with VEGF, TGF-ß, TNF-α and HGF (p < 0.05). Core genes BMP4 and CD4 were negatively correlated with Clostridium_XI (p < 0.05). Our results indicated that supplementing silybum marianum meal as a replacement for soybean meal resulted in increased cytokines production without affecting growth performance in growing lambs, and the enrichment of immune-related genes and altered microbial community in the ileum were contributed to the increased immune responses.

12.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166701, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36990128

RESUMEN

Hypoxia-regulated proximal tubular epithelial cells (PTCs) G2/M phase arrest/delay was involved in production of renal tubulointerstitial fibrosis (TIF). TIF is a common pathological manifestation of progression in patients with chronic kidney disease (CKD), and is often accompanied by lipid accumulation in renal tubules. However, cause-effect relationship between hypoxia-inducible lipid droplet-associated protein (Hilpda), lipid accumulation, G2/M phase arrest/delay and TIF remains unclear. Here we found that overexpression of Hilpda downregulated adipose triglyceride lipase (ATGL) promoted triglyceride overload in the form of lipid accumulation, leading to defective fatty acid ß-oxidation (FAO), ATP depletion in a human PTC cell line (HK-2) under hypoxia and in mice kidney tissue treated with unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI). Hilpda-induced lipid accumulation caused mitochondrial dysfunction, enhanced expression of profibrogenic factors TGF-ß1, α-SMA and Collagen I elevation, and reduced expression of G2/M phase-associated gene CDK1, as well as increased CyclinB1/D1 ratio, resulted in G2/M phase arrest/delay and profibrogenic phenotypes. Hilpda deficiency in HK-2 cell and kidney of mice with UUO had sustained expression of ATGL and CDK1 and reduced expression of TGF-ß1, Collagen I and CyclinB1/D1 ratio, resulting in the amelioration of lipid accumulation and G2/M arrest/delay and subsequent TIF. Expression of Hilpda correlated with lipid accumulation, was positively associated with tubulointerstitial fibrosis in tissue samples from patients with CKD. Our findings suggest that Hilpda deranges fatty acid metabolism in PTCs, which leads to G2/M phase arrest/delay and upregulation of profibrogenic factors, and consequently promote TIF which possibly underlie pathogenesis of CKD.


Asunto(s)
Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Humanos , Ratones , Apoptosis , Línea Celular Tumoral , Colágeno Tipo I/metabolismo , Regulación hacia Abajo , Ácidos Grasos , Fibrosis , Puntos de Control de la Fase G2 del Ciclo Celular , Hipoxia/patología , Riñón/patología , Lípidos , Insuficiencia Renal Crónica/patología , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/metabolismo
13.
Int J Biol Macromol ; 232: 123463, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36716846

RESUMEN

The purpose of this study is to construct a redox-responsive and targeted nanoparticle to effectively deliver resveratrol (Res) for alleviating acrylamide (ACR) toxicity. Here, Res-loaded tetrasulfide-containing organosilica nanoparticles (DSMSNs) functionalized with hyaluronic acid on the surface (DSMSNs@Res@HA) were prepared. The DSMSNs@Res@HA nanoparticles were spherical with an encapsulation efficiency of 46.68 ± 1.64 % and a hydrated particle size of about 237.73 nm. As expected, DSMSNs@Res@HA were capable of significantly protecting PC12 cells against ACR-induced damage in oxidative stress, mitochondrial membrane potential decrease, and cell apoptosis compared with free Res and DSMSNs@Res at the equivalent dose. Moreover, DSMSNs@Res@HA could be biodegraded and released Res in response to GSH stimulus. In vivo experiments suggested that DSMSNs@Res@HA significantly reduced histological damage in the brain, liver, and kidney of rats compared with free Res and DSMSNs@Res. After oral administration of DSMSNs@Res@HA, the intestinal flora of ACR-treated rats could be effectively regulated by improving the species uniformity and abundance as well as recovering the species diversity. According to these findings, DSMSNs@Res@HA is worth further investigation as a potential therapeutic nanomedicine to alleviate ACR toxicity and restore gut microbiota diversity.


Asunto(s)
Ácido Hialurónico , Nanopartículas , Ratas , Animales , Resveratrol/farmacología , Ácido Hialurónico/farmacología , Acrilamida/toxicidad , Oxidación-Reducción
14.
Front Microbiol ; 13: 1035331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386713

RESUMEN

This study investigated the effect of colostrum feeding time on the colon digesta microbiome of 2-day-old dairy calves using whole-genome-based metagenome sequencing, aiming to understand the dynamic changes of the colon microbiome when the colostrum feeding is delayed. In total, 24 male Holstein calves were grouped to different pasteurized colostrum feeding time treatments randomly: TRT0h (45 min after birth, n = 7); TRT6h (6 h after birth, n = 8); and TRT12h (12 h after birth, n = 9). Bacteria, archaea, eukaryotes, and viruses were identified in the colon microbiome, with bacteria (99.20%) being the most predominant domain. Streptococcus, Clostridium, Lactobacillus, Ruminococcus, and Enterococcus were the top five abundant bacteria genera. For colon microbiome functions, 114 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified, with nutrients metabolism-related functions "carbohydrate metabolism," "amino acid metabolism," "metabolism of cofactors and vitamins," "metabolism of terpenoids and polyketides," and "metabolism of other amino acids" being the top five secondary level of KEGG hierarchy functions. When colon microbiomes were compared, they were not affected by delaying first colostrum feeding at both taxonomic and functional levels. However, distinct clusters of colon microbiome profiles were shown based on PERMANOVA analysis despite of different colostrum feeding treatment, suggesting the individualized responses. Moreover, the relative abundance of microbial taxa, microbial functions, and differentially expressed genes was compared between the two distinct clusters, and different relationships were observed among host differentially expressed genes, differential levels of microbial taxa, and microbial functions between the two clusters. Our results suggest that the host may play an important role in shaping the colon microbiome of neonatal dairy calves in response to the early life feeding management. Whether the observed colon microbiome shifts affect gut health and function in the long term requires further research.

16.
Comput Math Methods Med ; 2022: 8418048, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081436

RESUMEN

Breast cancer is one of the most widespread and fatal cancers in women. At present, anticancer drug-inhibiting estrogen receptor α subtype (ERα) can greatly improve the cure rate for breast cancer patients, so the research and development of this kind of drugs are very urgent. In this paper, the problem of how to screen excellent anticancer drugs is abstracted as an optimization problem. Firstly, the graph model is used to extract low-dimensional features with strong distinguishing and describing ability according to various attributes of candidate compounds, and then, kernel functions are used to map these features to high-dimensional space. Then, the quantitative analysis model of ERα biological activity and the classification model based on ADMET properties of the support vector machine are constructed. Finally, sequential least square programming (SLSQP) is utilized to solve the ERα biological activity model. The experimental results show that for anticancer data sets, compared with principal component analysis (PCA), the error rate of the graph model constructed in this paper is reduced by 6.4%, 15%, and 7.8% on mean absolute error (MAE), mean squared error (MSE), and root mean square error (RMSE), respectively. In terms of classification prediction, compared with principal component analysis (PCA), the recall and precision rates of this method are enhanced by 19.5% and 12.41%, respectively. Finally, the optimal biological activity value (IC50_nM) 34.6 and inhibitory biological activity value (pIC50) 7.46 were obtained.


Asunto(s)
Receptor alfa de Estrógeno , Neoplasias , Algoritmos , Femenino , Humanos , Análisis de Componente Principal , Máquina de Vectores de Soporte
17.
J Anim Sci Biotechnol ; 13(1): 85, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35821163

RESUMEN

BACKGROUND: Methionine or lysine has been reported to influence DNA methylation and fat metabolism, but their combined effects in N6-methyl-adenosine (m6A) RNA methylation remain unclarified. The combined effects of rumen-protected methionine and lysine (RML) in a low-protein (LP) diet on lipid metabolism, m6A RNA methylation, and fatty acid (FA) profiles in the liver and muscle of lambs were investigated. Sixty-three male lambs were divided into three treatment groups, three pens per group and seven lambs per pen. The lambs were fed a 14.5% crude protein (CP) diet (adequate protein [NP]), 12.5% CP diet (LP), and a LP diet plus RML (LP + RML) for 60 d. RESULTS: The results showed that the addition of RML in a LP diet tended to lower the concentrations of plasma leptin (P = 0.07), triglyceride (P = 0.05), and non-esterified FA (P = 0.08). Feeding a LP diet increased the enzyme activity or mRNA expression of lipogenic enzymes and decreased lipolytic enzymes compared with the NP diet. This effect was reversed by supplementation of RML with a LP diet. The inclusion of RML in a LP diet affected the polyunsaturated fatty acids (PUFA), n-3 PUFA, and n-6 PUFA in the liver but not in the muscle, which might be linked with altered expression of FA desaturase-1 (FADS1) and acetyl-CoA carboxylase (ACC). A LP diet supplemented with RML increased (P < 0.05) total m6A levels in the liver and muscle and were accompanied by decreased expression of fat mass and obesity-associated protein (FTO) and alkB homologue 5 (ALKBH5). The mRNA expressions of methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14) in the LP + RML diet group were lower than those in the other two groups. Supplementation of RML with a LP diet affected only liver YTH domain family (YTHDF2) proteins (P < 0.05) and muscle YTHDF3 (P = 0.09), which can be explained by limited m6A-binding proteins that were mediated in mRNA fate. CONCLUSIONS: Our findings showed that the inclusion of RML in a LP diet could alter fat deposition through modulations of lipogenesis and lipolysis in the liver and muscle. These changes in fat metabolism may be associated with the modification of m6A RNA methylation. A systematic graph illustrates the mechanism of dietary methionine and lysine influence on lipid metabolism and M6A. The green arrow with triangular heads indicates as activation and brown-wine arrows with flat heads indicates as suppression.

18.
Animals (Basel) ; 12(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35625099

RESUMEN

Both waxy corn stover after fresh- (CF) and ripe-corn (CR) harvested are important byproducts of corn cropping system and have 20 d difference in harvest time. The study aimed to investigate the effects of prolonging harvest time on the nutritive value of corn stover silage by comparing CF with CR silages. In vitro ruminal experiment was firstly performed to investigate substrate degradation and fermentation of CF and CR silages. The CR diet was formulated by replacing 50% forage of CF silage with CR silage on a dry matter (DM) basis. Fourteen crossbred steers (Simmental × Limousin × local Chinese) aged 13 months with an average weight of 318.1 ± 37.1 kg were selected and randomly allocated into two dietary treatment groups. Although the CR silage had greater DM and fiber contents than CF silage, it did not alter in vitro degradation (p > 0.05), but with lower molar percentage of propionate and acetate to propionate ratio (p < 0.05). The cattle fed CR diet had a higher DM intake and lower fiber digestibility with reduction in 18S rRNA gene copies of protozoa and fungi and 16S rRNA gene copies of Fibrobacter succinogenes (p < 0.05). Further 16S rRNA gene amplicon analysis indicated a similar diversity of bacteria community between CR and CF treatments (p > 0.05). Few differences were observed in the abundance of genera larger than 1% (p > 0.05), except for the reduction in abundance of genera Ruminococcaceae_NK4A214_group in CR treatment (p < 0.05). In summary, prolonging 20 d harvest time of corn stover silage increases the forage fiber and DM content, which promotes feed intake with decreased fiber degradation, although rumen fermentation and growth performance are not changed in growing beef cattle.

19.
J Mol Model ; 28(6): 165, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35608685

RESUMEN

A new functionalized graphenylene-based structure was designed by adsorbing of alkali metals M3 and superalkali M3O (M = Li, Na, K) on graphenylene (BPC) surface. The spectral data show that the spectral properties of the M3O@BPC system are very similar because the two-dimensional material plays a major role in the main transition. However, for M3@BPC system, the spectral shapes of the three systems show significant changes compared to each other because the different alkali metals play a major role in the main transition process. The calculation results show that the introduction of superalkali does not significantly increase the first polarizability; however, the introduction of alkali metals can obtain considerable nonlinear optical materials. For M3@BPC system, the first hyperpolarizability increases significantly when heavier alkali metal is introduced into the two-dimensional structure, which is found to be 866,290.9 au for K3@ BPC. A two-level model and first hyperpolarizability density can explain the large first polarizability of these systems.

20.
Brain Res Bull ; 186: 16-26, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35526586

RESUMEN

Social contacts play an important role in the development and survival of social animals. Social isolation (SI) at adolescence often induces abnormalities in many kinds of behaviors. This study assessed whether five weeks of continuous SI at adulthood could alter social behaviors and whether dorsal raphe nucleus (DR) to medial prefrontal cortex (mPFC) 5-HT neural projections were involved in this alteration in C57BL/6J adult male mice. The present study found that five weeks chronic social isolation (CSI) at adulthood increased mounting and sniffing behaviors in resident-intruder test, and lengthened duration staying in interaction zone of stranger cage in the three-chamber social preference test. CSI also reduced the release of 5-HT in the mPFC detected by 5-HT 1.0 sensor and measured by in vivo fiber photometry test. Meanwhile, the c-Fos expression indicated that CSI reduced the activity of serotonergic neurons. Chemogenetic activation of DR-mPFC 5-HTergic projection reduced sniffing of CSI mice in the resident-intruder test, but didn't significantly affect mounting behavior. It also decreased the interaction time during the three-chamber social preference test. Thus, 5-HT neural projections from the DR to the mPFC are involved in changes of social exploration behaviors induced by CSI at adulthood.


Asunto(s)
Corteza Prefrontal , Serotonina , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo , Serotonina/metabolismo , Conducta Social , Aislamiento Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...