Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 19(36): e2302272, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37127855

RESUMEN

The large-scale hydrogen production and application through electrocatalytic water splitting depends crucially on the development of highly efficient, cost-effective electrocatalysts for oxygen evolution reaction (OER), which, however, remains challenging. Here, a new electrocatalyst of trimetallic Fe-Co-Ni hydroxide (denoted as FeCoNiOx Hy ) with a nanotubular structure is developed through an enhanced Kirkendall process under applied potential. The FeCoNiOx Hy features synergistic electronic interaction between Fe, Co, and Ni, which not only notably increases the intrinsic OER activity of FeCoNiOx Hy by facilitating the formation of *OOH intermediate, but also substantially improves the intrinsic conductivity of FeCoNiOx Hy to facilitate charge transfer and activate catalytic sites through electrocatalyst by promoting the formation of abundant Co3+ . Therefore, FeCoNiOx Hy delivers remarkably accelerated OER kinetics and superior apparent activity, indicated by an ultra-low overpotential potential of 257 mV at a high current density of 200 mA cm-2 . This work is of fundamental and practical significance for synergistic catalysis related to advanced energy conversion materials and technologies.

2.
Inorg Chem ; 61(21): 8283-8290, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35583467

RESUMEN

The rational design and synthesis of highly efficient electrocatalysts for oxygen evolution reaction (OER) is of critical importance to the large-scale production of hydrogen by water electrolysis. Here, we develop a bimetallic, synergistic, and highly efficient Co-Fe-P electrocatalyst for OER, by selecting a two-dimensional metal-organic framework (MOF) of Co-ZIF-L as the precursor. The Co-Fe-P electrocatalyst features pronounced synergistic effects induced by notable electron transfer from Co to Fe, and a large electrochemical active surface area achieved by organizing the synergistic Co-Fe-P into hierarchical nanosheet arrays with disordered grain boundaries. Such features facilitate the generation of abundant and efficiently exposed Co3+ sites for electrocatalytic OER and thus enable Co-Fe-P to deliver excellent activity (overpotential and Tafel slope as low as 240 mV and 36 mV dec-1, respectively, at a current density of 10 mA cm-2 in 1.0 M KOH solution). The Co-Fe-P electrocatalyst also shows great durability by steadily working for up to 24 h. Our work thus provides new insight into the development of highly efficient electrocatalysts based on nanoscale and/or electronic structure engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...