Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(9): e3002316, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37747910

RESUMEN

Embryonic mesenchymal cells are dispersed within an extracellular matrix but can coalesce to form condensates with key developmental roles. Cells within condensates undergo fate and morphological changes and induce cell fate changes in nearby epithelia to produce structures including hair follicles, feathers, or intestinal villi. Here, by imaging mouse and chicken embryonic skin, we find that mesenchymal cells undergo much of their dispersal in early interphase, in a stereotyped process of displacement driven by 3 hours of rapid and persistent migration followed by a long period of low motility. The cell division plane and the elevated migration speed and persistence of newly born mesenchymal cells are mechanosensitive, aligning with tissue tension, and are reliant on active WNT secretion. This behaviour disperses mesenchymal cells and allows daughters of recent divisions to travel long distances to enter dermal condensates, demonstrating an unanticipated effect of cell cycle subphase on core mesenchymal behaviour.

3.
Cell ; 186(5): 940-956.e20, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764291

RESUMEN

Fingerprints are complex and individually unique patterns in the skin. Established prenatally, the molecular and cellular mechanisms that guide fingerprint ridge formation and their intricate arrangements are unknown. Here we show that fingerprint ridges are epithelial structures that undergo a truncated hair follicle developmental program and fail to recruit a mesenchymal condensate. Their spatial pattern is established by a Turing reaction-diffusion system, based on signaling between EDAR, WNT, and antagonistic BMP pathways. These signals resolve epithelial growth into bands of focalized proliferation under a precociously differentiated suprabasal layer. Ridge formation occurs as a set of waves spreading from variable initiation sites defined by the local signaling environments and anatomical intricacies of the digit, with the propagation and meeting of these waves determining the type of pattern that forms. Relying on a dynamic patterning system triggered at spatially distinct sites generates the characteristic types and unending variation of human fingerprint patterns.


Asunto(s)
Transducción de Señal , Piel , Humanos , Piel/metabolismo
4.
Dis Model Mech ; 15(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35107126

RESUMEN

In mice, rats, dogs and humans, the growth and function of sebaceous glands and eyelid Meibomian glands depend on the ectodysplasin signalling pathway. Mutation of genes encoding the ligand EDA, its transmembrane receptor EDAR and the intracellular signal transducer EDARADD leads to hypohidrotic ectodermal dysplasia, characterised by impaired development of teeth and hair, as well as cutaneous glands. The rodent ear canal has a large auditory sebaceous gland, the Zymbal's gland, the function of which in the health of the ear canal has not been determined. We report that EDA-deficient mice, EDAR-deficient mice and EDARADD-deficient rats have Zymbal's gland hypoplasia. EdaTa mice have 25% prevalence of otitis externa at postnatal day 21 and treatment with agonist anti-EDAR antibodies rescues Zymbal's glands. The aetiopathogenesis of otitis externa involves infection with Gram-positive cocci, and dosing pregnant and lactating EdaTa females and pups with enrofloxacin reduces the prevalence of otitis externa. We infer that the deficit of sebum is the principal factor in predisposition to bacterial infection, and the EdaTa mouse is a potentially useful microbial challenge model for human acute otitis externa.


Asunto(s)
Conducto Auditivo Externo , Displasia Ectodermal Anhidrótica Tipo 1 , Otitis Externa , Animales , Ectodisplasinas , Femenino , Lactancia , Ratones
5.
Cell ; 185(1): 95-112.e18, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995520

RESUMEN

Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.


Asunto(s)
Dermatoglifia , Dedos/crecimiento & desarrollo , Organogénesis/genética , Polimorfismo de Nucleótido Simple , Dedos del Pie/crecimiento & desarrollo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Pueblo Asiatico/genética , Tipificación del Cuerpo/genética , Niño , Estudios de Cohortes , Femenino , Miembro Anterior/crecimiento & desarrollo , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Proteína del Locus del Complejo MDS1 y EV11/genética , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
6.
Oncogene ; 41(7): 1040-1049, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34916592

RESUMEN

Ectodysplasin A receptor (EDAR) is a death receptor in the Tumour Necrosis Factor Receptor (TNFR) superfamily with roles in the development of hair follicles, teeth and cutaneous glands. Here we report that human Oestrogen Receptor (ER) negative breast carcinomas which display squamous differentiation express EDAR strongly. Using a mouse model with a high Edar copy number, we show that elevated EDAR signalling results in a high incidence of mammary tumours in breeding female mice. These tumours resemble the EDAR-high human tumours in that they are characterised by a lack of oestrogen receptor expression, contain extensive squamous metaplasia, and display strong ß-catenin transcriptional activity. In the mouse model, all of the tumours carry somatic deletions of the third exon of the CTNNB1 gene that encodes ß-catenin. Deletion of this exon yields unconstrained ß-catenin signalling activity. We also demonstrate that ß-catenin activity is required for transformed cell growth, showing that increased EDAR signalling creates an environment in which ß-catenin activity can readily promote tumourigenesis. Together, this work identifies a novel death receptor oncogene in breast cancer, whose mechanism of transformation is based on the interaction between the WNT and Ectodysplasin A (EDA) pathways.


Asunto(s)
Receptores de la Ectodisplasina
7.
Philos Trans A Math Phys Eng Sci ; 379(2213): 20200270, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34743605

RESUMEN

Periodic patterns form intricate arrays in the vertebrate anatomy, notably the hair and feather follicles of the skin, but also internally the villi of the gut and the many branches of the lung, kidney, mammary and salivary glands. These tissues are composite structures, being composed of adjoined epithelium and mesenchyme, and the patterns that arise within them require interaction between these two tissue layers. In embryonic development, cells change both their distribution and state in a periodic manner, defining the size and relative positions of these specialized structures. Their placement is determined by simple spacing mechanisms, with substantial evidence pointing to a variety of local enhancement/lateral inhibition systems underlying the breaking of symmetry. The nature of the cellular processes involved, however, has been less clear. While much attention has focused on intercellular soluble signals, such as protein growth factors, experimental evidence has grown for contributions of cell movement or mechanical forces to symmetry breaking. In the mesenchyme, unlike the epithelium, cells may move freely and can self-organize into aggregates by chemotaxis, or through generation and response to mechanical strain on their surrounding matrix. Different modes of self-organization may coexist, either coordinated into a single system or with hierarchical relationships. Consideration of a broad range of distinct biological processes is required to advance understanding of biological pattern formation. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.


Asunto(s)
Modelos Biológicos , Piel , Animales , Morfogénesis , Vertebrados
8.
Methods Mol Biol ; 2248: 167-183, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33185875

RESUMEN

Genetic deficiency of ectodysplasin A (EDA) causes X-linked hypohidrotic ectodermal dysplasia, a congenital condition characterized by the absence or abnormal formation of sweat glands, teeth, and several skin appendages. Stimulation of the EDA receptor (EDAR) with agonists in the form of recombinant EDA or anti-EDAR antibodies can compensate for the absence of Eda in a mouse model of Eda deficiency, provided that agonists are administered in a timely manner during fetal development. Here we provide detailed protocols for the administration of EDAR agonists or antagonists, or other proteins, by the intravenous, intraperitoneal, and intra-amniotic routes as well as protocols to collect blood, to visualize sweat gland function, and to prepare skulls in mice.


Asunto(s)
Receptor Edar/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Vías de Administración de Medicamentos , Displasia Ectodérmica/tratamiento farmacológico , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Receptor Edar/genética , Ratones , Fenotipo , Proteínas Recombinantes/administración & dosificación , Resultado del Tratamiento
9.
Eur J Hum Genet ; 28(12): 1694-1702, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32499598

RESUMEN

Ectodysplasin A1 receptor (EDAR) is a TNF receptor family member with roles in the development and growth of hair, teeth and glands. A derived allele of EDAR, single-nucleotide variant rs3827760, encodes EDAR:p.(Val370Ala), a receptor with more potent signalling effects than the ancestral EDAR370Val. This allele of rs3827760 is at very high frequency in modern East Asian and Native American populations as a result of ancient positive selection and has been associated with straighter, thicker hair fibres, alteration of tooth and ear shape, reduced chin protrusion and increased fingertip sweat gland density. Here we report the characterisation of another SNV in EDAR, rs146567337, encoding EDAR:p.(Ser380Arg). The derived allele of this SNV is at its highest global frequency, of up to 5%, in populations of southern China, Vietnam, the Philippines, Malaysia and Indonesia. Using haplotype analyses, we find that the rs3827760 and rs146567337 SNVs arose on distinct haplotypes and that rs146567337 does not show the same signs of positive selection as rs3827760. From functional studies in cultured cells, we find that EDAR:p.(Ser380Arg) displays increased EDAR signalling output, at a similar level to that of EDAR:p.(Val370Ala). The existence of a second SNV with partly overlapping geographic distribution, the same in vitro functional effect and similar evolutionary age as the derived allele of rs3827760, but of independent origin and not exhibiting the same signs of strong selection, suggests a northern focus of positive selection on EDAR function in East Asia.


Asunto(s)
Receptor Edar/genética , Mutación con Ganancia de Función , Frecuencia de los Genes , Asia Sudoriental , Receptor Edar/química , Receptor Edar/metabolismo , Evolución Molecular , Células HEK293 , Células HaCaT , Haplotipos , Humanos , Simulación de Dinámica Molecular , Polimorfismo de Nucleótido Simple , Selección Genética
10.
PLoS Biol ; 17(2): e3000132, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30789897

RESUMEN

Feathers are arranged in a precise pattern in avian skin. They first arise during development in a row along the dorsal midline, with rows of new feather buds added sequentially in a spreading wave. We show that the patterning of feathers relies on coupled fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) signalling together with mesenchymal cell movement, acting in a coordinated reaction-diffusion-taxis system. This periodic patterning system is partly mechanochemical, with mechanical-chemical integration occurring through a positive feedback loop centred on FGF20, which induces cell aggregation, mechanically compressing the epidermis to rapidly intensify FGF20 expression. The travelling wave of feather formation is imposed by expanding expression of Ectodysplasin A (EDA), which initiates the expression of FGF20. The EDA wave spreads across a mesenchymal cell density gradient, triggering pattern formation by lowering the threshold of mesenchymal cells required to begin to form a feather bud. These waves, and the precise arrangement of feather primordia, are lost in the flightless emu and ostrich, though via different developmental routes. The ostrich retains the tract arrangement characteristic of birds in general but lays down feather primordia without a wave, akin to the process of hair follicle formation in mammalian embryos. The embryonic emu skin lacks sufficient cells to enact feather formation, causing failure of tract formation, and instead the entire skin gains feather primordia through a later process. This work shows that a reaction-diffusion-taxis system, integrated with mechanical processes, generates the feather array. In flighted birds, the key role of the EDA/Ectodysplasin A receptor (EDAR) pathway in vertebrate skin patterning has been recast to activate this process in a quasi-1-dimensional manner, imposing highly ordered pattern formation.


Asunto(s)
Tipificación del Cuerpo , Plumas/citología , Plumas/embriología , Transducción de Señal , Animales , Fenómenos Biomecánicos , Aves/embriología , Agregación Celular , Recuento de Células , Movimiento Celular , Forma de la Célula , Ectodisplasinas/metabolismo , Receptor Edar/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Vuelo Animal/fisiología , Mesodermo/citología , Mesodermo/embriología , Piel/citología , Piel/embriología , beta Catenina/metabolismo
11.
Biol Open ; 8(3)2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30745437

RESUMEN

Beta-catenin (CTNNB1) directs ectodermal appendage spacing by activating ectodysplasin A receptor (EDAR) transcription, but whether CTNNB1 acts by a similar mechanism in the prostate, an endoderm-derived tissue, is unclear. Here we examined the expression, function, and CTNNB1 dependence of the EDAR pathway during prostate development. In situ hybridization studies reveal EDAR pathway components including Wnt10b in the developing prostate and localize these factors to prostatic bud epithelium where CTNNB1 target genes are co-expressed. We used a genetic approach to ectopically activate CTNNB1 in developing mouse prostate and observed focal increases in Edar and Wnt10b mRNAs. We also used a genetic approach to test the prostatic consequences of activating or inhibiting Edar expression. Edar overexpression does not visibly alter prostatic bud formation or branching morphogenesis, and Edar expression is not necessary for either of these events. However, Edar overexpression is associated with an abnormally thick and collagen-rich stroma in adult mouse prostates. These results support CTNNB1 as a transcriptional activator of Edar and Wnt10b in the developing prostate and demonstrate Edar is not only important for ectodermal appendage patterning but also influences collagen organization in adult prostates.This article has an associated First Person interview with the first author of the paper.

12.
J Theor Biol ; 437: 225-238, 2018 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-29097151

RESUMEN

The orderly formation of the avian feather array is a classic example of periodic pattern formation during embryonic development. Various mathematical models have been developed to describe this process, including Turing/activator-inhibitor type reaction-diffusion systems and chemotaxis/mechanical-based models based on cell movement and tissue interactions. In this paper we formulate a mathematical model founded on experimental findings, a set of interactions between the key cellular (dermal and epidermal cell populations) and molecular (fibroblast growth factor, FGF, and bone morphogenetic protein, BMP) players and a medially progressing priming wave that acts as the trigger to initiate patterning. Linear stability analysis is used to show that FGF-mediated chemotaxis of dermal cells is the crucial driver of pattern formation, while perturbations in the form of ubiquitous high BMP expression suppress patterning, consistent with experiments. Numerical simulations demonstrate the capacity of the model to pattern the skin in a spatial-temporal manner analogous to avian feather development. Further, experimental perturbations in the form of bead-displacement experiments are recapitulated and predictions are proposed in the form of blocking mesenchymal cell proliferation.


Asunto(s)
Aves/metabolismo , Tipificación del Cuerpo/genética , Quimiotaxis/genética , Plumas/metabolismo , Algoritmos , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Aves/embriología , Simulación por Computador , Plumas/embriología , Regulación del Desarrollo de la Expresión Génica , Modelos Genéticos , Unión Proteica
13.
Nat Med ; 23(10): 1226-1233, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28869610

RESUMEN

Basal cell carcinoma (BCC), the most common human cancer, results from aberrant activation of the Hedgehog signaling pathway. Although most cases of BCC are sporadic, some forms are inherited, such as Bazex-Dupré-Christol syndrome (BDCS)-a cancer-prone genodermatosis with an X-linked, dominant inheritance pattern. We have identified mutations in the ACTRT1 gene, which encodes actin-related protein T1 (ARP-T1), in two of the six families with BDCS that were examined in this study. High-throughput sequencing in the four remaining families identified germline mutations in noncoding sequences surrounding ACTRT1. These mutations were located in transcribed sequences encoding enhancer RNAs (eRNAs) and were shown to impair enhancer activity and ACTRT1 expression. ARP-T1 was found to directly bind to the GLI1 promoter, thus inhibiting GLI1 expression, and loss of ARP-T1 led to activation of the Hedgehog pathway in individuals with BDCS. Moreover, exogenous expression of ACTRT1 reduced the in vitro and in vivo proliferation rates of cell lines with aberrant activation of the Hedgehog signaling pathway. In summary, our study identifies a disease mechanism in BCC involving mutations in regulatory noncoding elements and uncovers the tumor-suppressor properties of ACTRT1.


Asunto(s)
Carcinoma Basocelular/genética , Hipotricosis/genética , Proteínas de Microfilamentos/genética , Neoplasias Cutáneas/genética , Animales , Sistemas CRISPR-Cas , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos/genética , Femenino , Perfilación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Desnudos , Mutación , Trasplante de Neoplasias , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Transducción de Señal
14.
PLoS Biol ; 15(7): e2002117, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28700594

RESUMEN

Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction-diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction-diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF), wingless-related integration site (WNT), and bone morphogenetic protein (BMP) signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern's condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF) ß signalling, which serves to drive chemotactic mesenchymal patterning when reaction-diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis.


Asunto(s)
Folículo Piloso/embriología , Factor de Crecimiento Transformador beta/fisiología , Animales , Tipificación del Cuerpo , Diferenciación Celular , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos , Transducción de Señal , Piel/citología , Piel/embriología , Piel/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
15.
J Pathol ; 241(5): 600-613, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28008606

RESUMEN

Numerous studies have explored the altered transcriptional landscape associated with skin diseases to understand the nature of these disorders. However, data interpretation represents a significant challenge due to a lack of good maker sets for many of the specialized cell types that make up this tissue, whose composition may fundamentally alter during disease. Here we have sought to derive expression signatures that define the various cell types and structures that make up human skin, and demonstrate how they can be used to aid the interpretation of transcriptomic data derived from this organ. Two large normal skin transcriptomic datasets were identified, one RNA-seq (n = 578), the other microarray (n = 165), quality controlled and subjected separately to network-based analyses to identify clusters of robustly co-expressed genes. The biological significance of these clusters was then assigned using a combination of bioinformatics analyses, literature, and expert review. After cross comparison between analyses, 20 gene signatures were defined. These included expression signatures for hair follicles, glands (sebaceous, sweat, apocrine), keratinocytes, melanocytes, endothelia, muscle, adipocytes, immune cells, and a number of pathway systems. Collectively, we have named this resource SkinSig. SkinSig was then used in the analysis of transcriptomic datasets for 18 skin conditions, providing in-context interpretation of these data. For instance, conventional analysis has shown there to be a decrease in keratinization and fatty metabolism with age; we more accurately define these changes to be due to loss of hair follicles and sebaceous glands. SkinSig also highlighted the over-/under-representation of various cell types in skin diseases, reflecting an influx in immune cells in inflammatory disorders and a relative reduction in other cell types. Overall, our analyses demonstrate the value of this new resource in defining the functional profile of skin cell types and appendages, and in improving the interpretation of disease data. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Regulación de la Expresión Génica , Marcadores Genéticos/genética , Psoriasis/genética , Piel/patología , Transcriptoma , Factores de Edad , Anciano , Glándulas Apocrinas/metabolismo , Glándulas Apocrinas/patología , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Folículo Piloso/metabolismo , Folículo Piloso/patología , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Melanocitos/metabolismo , Melanocitos/patología , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Psoriasis/metabolismo , Psoriasis/patología , Glándulas Sebáceas/metabolismo , Glándulas Sebáceas/patología , Piel/metabolismo , Glándulas Sudoríparas/metabolismo , Glándulas Sudoríparas/patología
16.
Stem Cells ; 34(5): 1377-85, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26756547

RESUMEN

The cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re-establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15(+ve) bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo-epidermis. However, the identity of the first-responding cells, and in particular whether this process involves a direct contribution of K15(+ve) bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin-mediated partial ablation of K15(+ve) bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis. Stem Cells 2016;34:1377-1385.


Asunto(s)
Folículo Piloso/citología , Repitelización , Células Madre/citología , Animales , Apoptosis , Movimiento Celular , Proliferación Celular , Integrasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Nicho de Células Madre
17.
Pigment Cell Melanoma Res ; 28(4): 476-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25847135

RESUMEN

Hair follicles and sweat glands are recognized as reservoirs of melanocyte stem cells (MSCs). Unlike differentiated melanocytes, undifferentiated MSCs do not produce melanin. They serve as a source of differentiated melanocytes for the hair follicle and contribute to the interfollicular epidermis upon wounding, exposure to ultraviolet irradiation or in remission from vitiligo, where repigmentation often spreads outwards from the hair follicles. It is unknown whether these observations reflect the normal homoeostatic mechanism of melanocyte renewal or whether unperturbed interfollicular epidermis can maintain a melanocyte population that is independent of the skin's appendages. Here, we show that mouse tail skin lacking appendages does maintain a stable melanocyte number, including a low frequency of amelanotic melanocytes, into adult life. Furthermore, we show that actively cycling differentiated melanocytes are present in postnatal skin, indicating that amelanotic melanocytes are not uniquely relied on for melanocyte homoeostasis.


Asunto(s)
Células Epidérmicas , Folículo Piloso/citología , Melanocitos/citología , Animales , División Celular , Humanos , Melaninas/biosíntesis , Ratones
18.
Elife ; 3: e04000, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25647637

RESUMEN

The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in ß-catenin activity along the axis of the nephron tubule. By modifying ß-catenin activity, we force cells within nephrons to differentiate according to the imposed ß-catenin activity level, thereby causing spatial shifts in nephron segments. The ß-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises ß-catenin activity and promotes segment identities associated with low ß-catenin activity. ß-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating ß-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/metabolismo , Nefronas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Receptores Notch/metabolismo , beta Catenina/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular , Cámaras de Difusión de Cultivos , Embrión de Mamíferos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Nefronas/citología , Nefronas/crecimiento & desarrollo , Técnicas de Cultivo de Órganos , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Notch/antagonistas & inhibidores , Receptores Notch/genética , Transducción de Señal , beta Catenina/genética
19.
J Invest Dermatol ; 135(2): 359-368, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25207818

RESUMEN

Impaired ectodysplasin A (EDA) receptor (EDAR) signaling affects ectodermally derived structures including teeth, hair follicles, and cutaneous glands. The X-linked hypohidrotic ectodermal dysplasia (XLHED), resulting from EDA deficiency, can be rescued with lifelong benefits in animal models by stimulation of ectodermal appendage development with EDAR agonists. Treatments initiated later in the developmental period restore progressively fewer of the affected structures. It is unknown whether EDAR stimulation in adults with XLHED might have beneficial effects. In adult Eda mutant mice treated for several weeks with agonist anti-EDAR antibodies, we find that sebaceous gland size and function can be restored to wild-type levels. This effect is maintained upon chronic treatment but reverses slowly upon cessation of treatment. Sebaceous glands in all skin regions respond to treatment, although to varying degrees, and this is accompanied in both Eda mutant and wild-type mice by sebum secretion to levels higher than those observed in untreated controls. Edar is expressed at the periphery of the glands, suggesting a direct homeostatic effect of Edar stimulation on the sebaceous gland. Sebaceous gland size and sebum production may serve as biomarkers for EDAR stimulation, and EDAR agonists may improve skin dryness and eczema frequently observed in XLHED.


Asunto(s)
Receptor Edar/fisiología , Glándulas Sebáceas/anatomía & histología , Glándulas Sebáceas/fisiología , Transducción de Señal/efectos de los fármacos , Envejecimiento , Animales , Proliferación Celular , Displasia Ectodérmica/tratamiento farmacológico , Receptor Edar/agonistas , Ratones , Tamaño de los Órganos , Transducción de Señal/fisiología
20.
J Biol Chem ; 289(7): 4273-85, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24391090

RESUMEN

Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/toxicidad , Anticuerpos Neutralizantes/toxicidad , Autoanticuerpos/toxicidad , Displasia Ectodérmica/inducido químicamente , Displasia Ectodérmica/inmunología , Ectodisplasinas/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales de Origen Murino/genética , Anticuerpos Monoclonales de Origen Murino/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Autoanticuerpos/genética , Autoanticuerpos/inmunología , Secuencia de Bases , Bovinos , Línea Celular , Perros , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Displasia Ectodérmica/patología , Ectodisplasinas/genética , Ectodisplasinas/inmunología , Ectodisplasinas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...