Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 283(33): 22557-64, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18515360

RESUMEN

Understanding the structural basis for protein thermostability is of considerable biological and biotechnological importance as exemplified by the industrial use of xylanases at elevated temperatures in the paper pulp and animal feed sectors. Here we have used directed protein evolution to generate hyperthermostable variants of a thermophilic GH11 xylanase, EvXyn11. The Gene Site Saturation Mutagenesis (GSSM) methodology employed assesses the influence on thermostability of all possible amino acid substitutions at each position in the primary structure of the target protein. The 15 most thermostable mutants, which generally clustered in the N-terminal region of the enzyme, had melting temperatures (Tm) 1-8 degrees C higher than the parent protein. Screening of a combinatorial library of the single mutants identified a hyperthermostable variant, EvXyn11TS, containing seven mutations. EvXyn11TS had a Tm approximately 25 degrees C higher than the parent enzyme while displaying catalytic properties that were similar to EvXyn11. The crystal structures of EvXyn11 and EvXyn11TS revealed an absence of substantial changes to identifiable intramolecular interactions. The only explicable mutations are T13F, which increases hydrophobic interactions, and S9P that apparently locks the conformation of a surface loop. This report shows that the molecular basis for the increased thermostability is extraordinarily subtle and points to the requirement for new tools to interrogate protein folding at non-ambient temperatures.


Asunto(s)
Endo-1,4-beta Xilanasas/química , Ingeniería de Proteínas/métodos , Codón , Cartilla de ADN , Estabilidad de Medicamentos , Endo-1,4-beta Xilanasas/genética , Biblioteca de Genes , Reacción en Cadena de la Polimerasa , Termodinámica
2.
Appl Environ Microbiol ; 70(6): 3609-17, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15184164

RESUMEN

Recombinant DNA technologies enable the direct isolation and expression of novel genes from biotopes containing complex consortia of uncultured microorganisms. In this study, genomic libraries were constructed from microbial DNA isolated from insect intestinal tracts from the orders Isoptera (termites) and Lepidoptera (moths). Using a targeted functional assay, these environmental DNA libraries were screened for genes that encode proteins with xylanase activity. Several novel xylanase enzymes with unusual primary sequences and novel domains of unknown function were discovered. Phylogenetic analysis demonstrated remarkable distance between the sequences of these enzymes and other known xylanases. Biochemical analysis confirmed that these enzymes are true xylanases, which catalyze the hydrolysis of a variety of substituted beta-1,4-linked xylose oligomeric and polymeric substrates and produce unique hydrolysis products. From detailed polyacrylamide carbohydrate electrophoresis analysis of substrate cleavage patterns, the xylan polymer binding sites of these enzymes are proposed.


Asunto(s)
Bacterias/enzimología , Sistema Digestivo/microbiología , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Hongos/enzimología , Isópteros/microbiología , Mariposas Nocturnas/microbiología , Secuencia de Aminoácidos , Animales , Bacterias/genética , ADN Bacteriano/análisis , ADN Bacteriano/aislamiento & purificación , ADN de Hongos/análisis , ADN de Hongos/aislamiento & purificación , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/clasificación , Hongos/genética , Biblioteca de Genes , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
3.
Protein Sci ; 13(2): 494-503, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14718652

RESUMEN

Directed evolution technologies were used to selectively improve the stability of an enzyme without compromising its catalytic activity. In particular, this article describes the tandem use of two evolution strategies to evolve a xylanase, rendering it tolerant to temperatures in excess of 90 degrees C. A library of all possible 19 amino acid substitutions at each residue position was generated and screened for activity after a temperature challenge. Nine single amino acid residue changes were identified that enhanced thermostability. All 512 possible combinatorial variants of the nine mutations were then generated and screened for improved thermal tolerance under stringent conditions. The screen yielded eleven variants with substantially improved thermal tolerance. Denaturation temperature transition midpoints were increased from 61 degrees C to as high as 96 degrees C. The use of two evolution strategies in combination enabled the rapid discovery of the enzyme variant with the highest degree of fitness (greater thermal tolerance and activity relative to the wild-type parent).


Asunto(s)
Evolución Molecular Dirigida/métodos , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Sustitución de Aminoácidos , Endo-1,4-beta Xilanasas/química , Estabilidad de Enzimas , Variación Genética/genética , Calor , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Mapeo Peptídico , Homología de Secuencia de Aminoácido , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...