Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
3.
Sci Transl Med ; 13(600)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193613

RESUMEN

Human heart failure, a leading cause of death worldwide, is a prominent example of a chronic disease that may result from poor cell renewal. The Hippo signaling pathway is an inhibitory kinase cascade that represses adult heart muscle cell (cardiomyocyte) proliferation and renewal after myocardial infarction in genetically modified mice. Here, we investigated an adeno-associated virus 9 (AAV9)-based gene therapy to locally knock down the Hippo pathway gene Salvador (Sav) in border zone cardiomyocytes in a pig model of ischemia/reperfusion-induced myocardial infarction. Two weeks after myocardial infarction, when pigs had left ventricular systolic dysfunction, we administered AAV9-Sav-short hairpin RNA (shRNA) or a control AAV9 viral vector carrying green fluorescent protein (GFP) directly into border zone cardiomyocytes via catheter-mediated subendocardial injection. Three months after injection, pig hearts treated with a high dose of AAV9-Sav-shRNA exhibited a 14.3% improvement in ejection fraction (a measure of left ventricular systolic function), evidence of cardiomyocyte division, and reduced scar sizes compared to pigs receiving AAV9-GFP. AAV9-Sav-shRNA-treated pig hearts also displayed increased capillary density and reduced cardiomyocyte ploidy. AAV9-Sav-shRNA gene therapy was well tolerated and did not induce mortality. In addition, liver and lung pathology revealed no tumor formation. Local delivery of AAV9-Sav-shRNA gene therapy to border zone cardiomyocytes in pig hearts after myocardial infarction resulted in tissue renewal and improved function and may have utility in treating heart failure.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Ratones , Infarto del Miocardio/terapia , Transducción de Señal , Porcinos
4.
Artículo en Inglés | MEDLINE | ID: mdl-31615785

RESUMEN

Within the realm of zoological study, the question of how an organism reaches a specific size has been largely unexplored. Recently, studies performed to understand the regulation of organ size have revealed that both cellular signals and external cues contribute toward the determination of total cell mass within each organ. The establishment of final organ size requires the precise coordination of cell growth, proliferation, and survival throughout development and postnatal life. In the mammalian heart, the regulation of size is biphasic. During development, cardiomyocyte proliferation predominantly determines cardiac growth, whereas in the adult heart, total cell mass is governed by signals that regulate cardiac hypertrophy. Here, we review the current state of knowledge regarding the extrinsic factors and intrinsic mechanisms that control heart size during development. We also discuss the metabolic switch that occurs in the heart after birth and precedes homeostatic control of postnatal heart size.


Asunto(s)
Cardiomegalia/metabolismo , Corazón/crecimiento & desarrollo , Corazón/fisiología , Hipertrofia/patología , Zoología/métodos , Animales , Ciclo Celular , Proliferación Celular , Supervivencia Celular , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/citología , Tamaño de los Órganos , Organogénesis , Transducción de Señal , Somatomedinas/metabolismo
5.
Circ Res ; 124(11): 1647-1657, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31120819

RESUMEN

After myocardial injury, cardiomyocyte loss cannot be corrected by using currently available clinical treatments. In recent years, considerable effort has been made to develop cell-based cardiac repair therapies aimed at correcting for this loss. An exciting crop of recent studies reveals that inducing endogenous repair and proliferation of cardiomyocytes may be a viable option for regenerating injured myocardium. Here, we review current heart failure treatments, the state of cardiomyocyte renewal in mammals, and the molecular signals that stimulate cardiomyocyte proliferation. These signals include growth factors, intrinsic signaling pathways, microRNAs, and cell cycle regulators. Animal model cardiac regeneration studies reveal that modulation of exogenous and cell-intrinsic signaling pathways can induce reentry of adult cardiomyocytes into the cell cycle. Using direct myocardial injection, epicardial patch delivery, or systemic administration of growth molecules, these studies show that inducing endogenous cardiomyocytes to self-renew is an exciting and promising therapeutic strategy to treat cardiac injury in humans.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Proliferación Celular/efectos de los fármacos , Insuficiencia Cardíaca/terapia , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/trasplante , Regeneración/efectos de los fármacos , Trasplante de Células Madre , Animales , Fármacos Cardiovasculares/efectos adversos , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Recuperación de la Función , Transducción de Señal , Trasplante de Células Madre/efectos adversos , Resultado del Tratamiento
7.
Nature ; 534(7605): 119-23, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251288

RESUMEN

Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair.


Asunto(s)
Antioxidantes/metabolismo , Lesiones Cardíacas/metabolismo , Proteínas de Homeodominio/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Factores de Transcripción/metabolismo , Cicatrización de Heridas/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Proteínas de Ciclo Celular , Modelos Animales de Enfermedad , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/genética , Femenino , Depuradores de Radicales Libres/metabolismo , Lesiones Cardíacas/genética , Lesiones Cardíacas/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Vía de Señalización Hippo , Proteínas de Homeodominio/genética , Masculino , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Regeneración/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética , Proteínas Señalizadoras YAP , Proteína del Homeodomínio PITX2
8.
Cancer Res ; 74(15): 4170-82, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24906622

RESUMEN

Cancer stem cells (CSC) are purported to initiate and maintain tumor growth. Deregulation of normal stem cell signaling may lead to the generation of CSCs; however, the molecular determinants of this process remain poorly understood. Here we show that the transcriptional coactivator YAP1 is a major determinant of CSC properties in nontransformed cells and in esophageal cancer cells by direct upregulation of SOX9. YAP1 regulates the transcription of SOX9 through a conserved TEAD binding site in the SOX9 promoter. Expression of exogenous YAP1 in vitro or inhibition of its upstream negative regulators in vivo results in elevated SOX9 expression accompanied by the acquisition of CSC properties. Conversely, shRNA-mediated knockdown of YAP1 or SOX9 in transformed cells attenuates CSC phenotypes in vitro and tumorigenicity in vivo. The small-molecule inhibitor of YAP1, verteporfin, significantly blocks CSC properties in cells with high YAP1 and a high proportion of ALDH1(+). Our findings identify YAP1-driven SOX9 expression as a critical event in the acquisition of CSC properties, suggesting that YAP1 inhibition may offer an effective means of therapeutically targeting the CSC population.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fosfoproteínas/metabolismo , Factor de Transcripción SOX9/metabolismo , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis/fisiología , Modelos Animales de Enfermedad , Neoplasias Esofágicas/genética , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , Factor de Transcripción SOX9/biosíntesis , Factor de Transcripción SOX9/genética , Factores de Transcripción , Activación Transcripcional , Transfección , Regulación hacia Arriba , Proteínas Señalizadoras YAP
9.
Dev Cell ; 15(4): 603-16, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18854144

RESUMEN

The Aurora B kinase is the enzymatic core of the chromosomal passenger complex, which is a critical regulator of mitosis. To identify novel regulators of Aurora B, we performed a genome-wide screen for suppressors of a temperature-sensitive lethal allele of the C. elegans Aurora B kinase AIR-2. This screen uncovered a member of the Afg2/Spaf subfamily of Cdc48-like AAA ATPases as an essential inhibitor of AIR-2 stability and activity. Depletion of CDC-48.3 restores viability to air-2 mutant embryos and leads to abnormally high AIR-2 levels at the late telophase/G1 transition. Furthermore, CDC-48.3 binds directly to AIR-2 and inhibits its kinase activity from metaphase through telophase. While canonical p97/Cdc48 proteins have been assigned contradictory roles in the regulation of Aurora B, our results identify a member of the Afg2/Spaf AAA ATPases as a critical in vivo inhibitor of this kinase during embryonic development.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Caenorhabditis elegans/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Alelos , Sustitución de Aminoácidos , Animales , Aurora Quinasa B , Aurora Quinasas , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Glutatión Transferasa/metabolismo , Lisina/metabolismo , Mitosis , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Recombinantes/metabolismo , Temperatura , Proteína que Contiene Valosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA