Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(32): e2302146, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37145114

RESUMEN

Despite record-breaking devices, interfaces in perovskite solar cells are still poorly understood, inhibiting further progress. Their mixed ionic-electronic nature results in compositional variations at the interfaces, depending on the history of externally applied biases. This makes it difficult to measure the band energy alignment of charge extraction layers accurately. As a result, the field often resorts to a trial-and-error process to optimize these interfaces. Current approaches are typically carried out in a vacuum and on incomplete cells, hence values may not reflect those found in working devices. To address this, a pulsed measurement technique characterizing the electrostatic potential energy drop across the perovskite layer in a functioning device is developed. This method reconstructs the current-voltage (JV) curve for a range of stabilization biases, holding the ion distribution "static" during subsequent rapid voltage pulses. Two different regimes are observed: at low biases, the reconstructed JV curve is "s-shaped", whereas, at high biases, typical diode-shaped curves are returned. Using drift-diffusion simulations, it is demonstrated that the intersection of the two regimes reflects the band offsets at the interfaces. This approach effectively allows measurements of interfacial energy level alignment in a complete device under illumination and without the need for expensive vacuum equipment.

2.
Opt Express ; 30(24): 43678-43690, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36523061

RESUMEN

In this manuscript, we present high spatial resolution focusing of electromagnetic waves at telecommunication wavelengths (λ0 = 1.55 µm) by using high-refractive index mesoscale dielectrics placed at the end of an optical fiber. Our approach exploits photonic nanojets (PNJs) to achieve high-intensity, spatially narrow focal spots. The response of the device is evaluated in detail considering 2-dimensional (2D) and 3-dimensional (3D) configurations using high-index mesoscale cylindrical and spherical dielectrics, respectively, placed on top of an optical fiber. It is shown how the PNJs can be shifted towards the output surface of the mesoscale high-index dielectric by simply truncating its 2D/3D cylindrical/spherical output profile. With this setup, a PNJ with a high transversal resolution is obtained using the 2D/3D engineered mesoscale dielectric particles achieving a Full-Width at Half-Maximum of FWHM = 0.28λ0 (2D truncated dielectric), and FWHMy = 0.17λ0 and FWHMx = 0.21λ0 (3D truncated dielectric). The proposed structure may have potential in applications where near-field high spatial resolution is required, such as in sensing and imaging systems.

3.
Clim Change ; 170(3-4): 32, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35194272

RESUMEN

Many U.S. states have taken significant action on climate change in recent years, demonstrating their commitment despite federal policy gridlock and rollbacks. Yet, there is still much we do not know about the agents, discourses, and strategies of those seeking to delay or obstruct state-level climate action. We first ask, what are the obstacles to strong and effective climate policy within U.S. states? We review the political structures and interest groups that slow action, and we examine emerging tensions between climate justice and the technocratic and/or market-oriented approaches traditionally taken by many mainstream environmental groups. Second, what are potential solutions for overcoming these obstacles? We suggest strategies for overcoming opposition to climate action that may advance more effective and inclusive state policy, focusing on political strategies, media framing, collaboration, and leveraging the efforts of ambitious local governments.

4.
Light Sci Appl ; 11(1): 22, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35067682

RESUMEN

MXenes, an emerging class of two-dimensional materials, exhibit characteristics that promise significant potential for their use in next generation optoelectronic sensors. An interplay between interband transitions and boundary effects offer the potential to tune the plasma frequencies over a large spectral range from the near-infrared to the mid-infrared. This tuneability along with the 'layered' nature of the material not only offer the flexibility to produce plasmon resonances across a wide range of wavelengths, but also add a degree of freedom to the sensing mechanism by allowing the plasma frequency to be modulated. Here we show, numerically, that MXenes can support plasmons in the telecommunications frequency range and that surface plasmon resonances can be excited on a standard MXene coated side polished optical fiber. Thus, presenting the tantalising prospect of highly selective distributed optical fiber sensor networks.

5.
Sci Rep ; 12(1): 894, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042917

RESUMEN

Controlling and manipulating the propagation of surface plasmons has become a field of intense research given their potential in a wide range of applications, such as plasmonic circuits, optical trapping, sensors, and lensing. In this communication, we exploit classical optics techniques to design and evaluate the performance of plasmonic lenses with meniscus-like geometries. To do this, we use an adapted lens maker equation that incorporates the effective medium concepts of surface plasmons polaritons travelling in dielectric-metal and dielectric-dielectric-metal configurations. The design process for such plasmonic meniscus lenses is detailed and two different plasmonic focusing structures are evaluated: a plasmonic lens with a quasi-planar output surface and a plasmonic meniscus lens having a convex-concave input-output surface, respectively. The structures are designed to have an effective focal length of 2λ0 at the visible wavelength of 633 nm. A performance comparison of the two plasmonic lenses is shown, demonstrating improvements to the power enhancement, with a 22% and 16.5% increase when using 2D (ideal) or 3D (realistic plasmonic) meniscus designs, respectively, compared to the power enhancement obtained with convex-planar lenses. It is also shown that the depth of focus of the focal spot presents a 19.8% decrease when using meniscus lenses in 2D and a 34.3% decrease when using the proposed 3D plasmonic meniscus designs. The broadband response of a plasmonic meniscus lens (550-750 nm wavelength range) is also studied along with the influence of potential fabrication errors on the generated effective focal length. The proposed plasmonic lenses could be exploited as alternative focusing devices for surface plasmons polaritons in applications such as sensing.

6.
Front Optoelectron ; 14(4): 383-398, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36637765

RESUMEN

Semiconductor optoelectronic fiber technology has seen rapid development in recent years thanks to advancements in fabrication and post-processing techniques. Integrating the optical and electronic functionality of semiconductor materials into a fiber geometry has opened up many possibilities, such as in-fiber frequency generation, signal modulation, photodetection, and solar energy harvesting. This review provides an overview of the state-of-the-art in semiconductor optoelectronic fibers, including fabrication and post-processing methods, materials and their optical properties. The applications in nonlinear optics, optical-electrical conversion, lasers and multimaterial functional fibers will also be highlighted.

7.
Opt Lett ; 45(15): 4128-4131, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735240

RESUMEN

In this Letter, an optical fiber side-polishing process is proposed that is non-contact, versatile, and scalable. A CO2 laser, with carefully selected pulse parameters, is used to remove cladding material from the side of an optical fiber in a controlled manner. The resulting side-polished optical fiber has adiabatic polishing transitions and a flat uniform polished region. The technique provides a pristine polishing surface with an RMS surface roughness of less than 2 nm. Furthermore, in contrast to traditional side-polishing methods, the wear of hard tooling, the associated surface flaws, and issues with residual abrasive particulates are all negated. It is anticipated that this technique will provide a robust platform for the next generation of optical fiber devices that are based on in-fiber light-matter interaction with exotic materials, such as low-dimensional semi-conductors and topological insulators.

8.
Opt Express ; 27(4): 4462-4470, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876064

RESUMEN

We report the fabrication of low-loss, low temperature deposited polysilicon waveguides via laser crystallization. The process involves pre-patterning amorphous silicon films to confine the thermal energy during the crystallization phase, which helps to control the grain growth and reduce the heat transfer to the surrounding media, making it compatible with CMOS integration. Micro-Raman spectroscopy, Secco etching and X-ray diffraction measurements reveal the high crystalline quality of the processed waveguides with the formation of millimeter long crystal grains. Optical losses as low as 5.3 dB/cm have been measured, indicating their suitability for the development of high-density integrated circuits.

9.
Opt Lett ; 43(13): 3100-3103, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29957791

RESUMEN

Few-layer molybdenum disulfide (MoS2) has an electronic band structure that is dependent on the number of layers and, therefore, is a very promising material for an array of optoelectronic, photonic, and lasing applications. In this Letter, we make use of a side-polished optical fiber platform to gain access to the nonlinear optical properties of the MoS2 material. We show that the nonlinear response can be significantly enhanced via resonant coupling to the thin film material, allowing for the observation of optical modulation and spectral broadening in the telecom band. This route to access the nonlinear properties of two-dimensional materials promises to yield new insights into their photonic properties.

10.
Opt Lett ; 42(18): 3553, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28914899

RESUMEN

We correct an error of the nonlinear refractive index used in our original paper.

11.
Nat Commun ; 7: 13265, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27775066

RESUMEN

Glass fibres with silicon cores have emerged as a versatile platform for all-optical processing, sensing and microscale optoelectronic devices. Using SiGe in the core extends the accessible wavelength range and potential optical functionality because the bandgap and optical properties can be tuned by changing the composition. However, silicon and germanium segregate unevenly during non-equilibrium solidification, presenting new fabrication challenges, and requiring detailed studies of the alloy crystallization dynamics in the fibre geometry. We report the fabrication of SiGe-core optical fibres, and the use of CO2 laser irradiation to heat the glass cladding and recrystallize the core, improving optical transmission. We observe the ramifications of the classic models of solidification at the microscale, and demonstrate suppression of constitutional undercooling at high solidification velocities. Tailoring the recrystallization conditions allows formation of long single crystals with uniform composition, as well as fabrication of compositional microstructures, such as gratings, within the fibre core.

12.
Opt Lett ; 41(7): 1360-3, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27192236

RESUMEN

We propose and demonstrate a novel approach to obtaining small-core polysilicon waveguides from the silicon fiber platform. The fibers were fabricated via a conventional drawing tower method and, subsequently, tapered down to achieve silicon core diameters of ∼1 µm, the smallest optical cores for this class of fiber to date. Characterization of the material properties have shown that the taper process helps to improve the local crystallinity of the silicon core, resulting in a significant reduction in the material loss. By exploiting the combination of small cores and low losses, these tapered fibers have enabled the first observation of nonlinear transmission within a polycrystalline silicon waveguide of any type. As the fiber drawing method is highly scalable, it opens a route for the development of low-cost and flexible nonlinear silicon photonic systems.

13.
Sci Rep ; 6: 23512, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27001353

RESUMEN

Graphene is a highly versatile two-dimensional material platform that offers exceptional optical and electrical properties. Of these, its dynamic conductivity and low effective carrier mass are of particular interest for optoelectronic applications as they underpin the material's broadband nonlinear optical absorption and ultra-fast carrier mobility, respectively. In this paper, we utilize these phenomena to demonstrate a high-speed, in-fibre optical modulator developed on a side-polished optical fibre platform. An especially low insertion loss (<1 dB) was achieved by polishing the fibre to a near atomically smooth surface (<1 nm RMS), which minimized scattering and ensured excellent contact between the graphene film and the fibre. In order to enhance the light-matter interaction, the graphene film is coated with a high index polyvinyl butyral layer, which has the added advantage of acting as a barrier to the surrounding environment. Using this innovative approach, we have fabricated a robust and stable all-fibre device with an extinction ratio as high as 9 dB and operation bandwidth of 0.5 THz. These results represent a key step towards the integration of low-dimensional materials within standard telecoms networks.

14.
Opt Lett ; 40(10): 2213-6, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26393702

RESUMEN

The nonlinear absorption properties of a germanium-on-silicon waveguide have been characterized across the two-photon absorption (TPA) transmission window. The results show that the TPA parameters in germanium waveguides are much stronger than the peak values in silicon, in good agreement with selected measurements conducted in bulk materials. Exploiting the large nonlinear absorption near the bandedge, efficient all-optical modulation is achieved with a modulation depth of ∼8 dB and a response time <5 ps.

15.
Opt Lett ; 40(2): 268-71, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25679861

RESUMEN

All-optical modulation has been demonstrated in a germanium-on-silicon rib waveguide over the mid-infrared wavelength range of 2-3 µm using a free-carrier absorption scheme. Transmission measurements have shown the waveguides to have low propagation losses that are relatively independent of wavelength out to 3.8 µm, indicating that the modulation could be extended further into the mid-infrared region for applications in sensing and spectroscopy. By monitoring the material recovery, the free-carrier lifetime of the micron-sized waveguides has been estimated to be ∼18 ns, allowing for modulation speeds within the megahertz regime.

16.
Nat Mater ; 13(12): 1122-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25262096

RESUMEN

For decades now, silicon has been the workhorse of the microelectronics revolution and a key enabler of the information age. Owing to its excellent optical properties in the near- and mid-infrared, silicon is now promising to have a similar impact on photonics. The ability to incorporate both optical and electronic functionality in a single material offers the tantalizing prospect of amplifying, modulating and detecting light within a monolithic platform. However, a direct consequence of silicon's transparency is that it cannot be used to detect light at telecommunications wavelengths. Here, we report on a laser processing technique developed for our silicon fibre technology through which we can modify the electronic band structure of the semiconductor material as it is crystallized. The unique fibre geometry in which the silicon core is confined within a silica cladding allows large anisotropic stresses to be set into the crystalline material so that the size of the bandgap can be engineered. We demonstrate extreme bandgap reductions from 1.11 eV down to 0.59 eV, enabling optical detection out to 2,100 nm.

17.
Opt Express ; 21(23): 28751-7, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24514387

RESUMEN

A method to fabricate all-in-fiber liquid microcells has been demonstrated which allows for the incorporation of complex hollow-core photonic crystal fibers (HCPCFs). The approach is based on a mechanical splicing method in which the hollow-core fibers are pigtailed with telecoms fibers to yield devices that have low insertion losses, are highly compact, and do not suffer from evaporation of the core material. To isolate the PCF cores for the infiltration of low index liquids, a pulsed CO2 laser cleaving technique has been developed which seals only the very ends of the cladding holes, thus minimizing degradation of the guiding properties at the coupling region. The efficiency of this integration method has been verified via strong cascaded Raman scattering in both toluene (high index) core capillaries and ethanol (low index) core HCPCFs, for power thresholds up to six orders of magnitude lower than previous results. We anticipate that this stable, robust all-fiber integration approach will open up new possibilities for the exploration of optofluidic interactions.

18.
Opt Lett ; 37(16): 3351-3, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23381254

RESUMEN

Multimode propagation in silicon core optical fibers is investigated via numerical modeling of the coupled mode equations. The simulations consider spectral evolution in two fibers with different micrometer-sized cores that have experimentally been shown to exhibit nonlinear broadening. The results indicate that most of the coupled power is propagated in the fundamental mode of each fiber, with a small contribution from the higher-order modes affecting the spectral shape but not the width of the broadening.

19.
J Am Chem Soc ; 134(1): 19-22, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22148467

RESUMEN

Hydrogenated amorphous silicon (a-Si:H) is one of the most technologically important semiconductors. The challenge in producing it from SiH(4) precursor is to overcome a significant kinetic barrier to decomposition at a low enough temperature to allow for hydrogen incorporation into a deposited film. The use of high precursor concentrations is one possible means to increase reaction rates at low enough temperatures, but in conventional reactors such an approach produces large numbers of homogeneously nucleated particles in the gas phase, rather than the desired heterogeneous deposition on a surface. We report that deposition in confined micro-/nanoreactors overcomes this difficulty, allowing for the use of silane concentrations many orders of magnitude higher than conventionally employed while still realizing well-developed films. a-Si:H micro-/nanowires can be deposited in this way in extreme aspect ratio, small-diameter optical fiber capillary templates. The semiconductor materials deposited have ~0.5 atom% hydrogen with passivated dangling bonds and good electronic properties. They should be suitable for a wide range of photonic and electronic applications such as nonlinear optical fibers and solar cells.

20.
Opt Lett ; 36(13): 2480-2, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21725451

RESUMEN

We investigate the surface roughness of polycrystalline silicon core optical fibers fabricated using a high-pressure chemical deposition technique. By measuring the optical transmission of two fibers with different core sizes, we will show that scattering from the core-cladding interface has a negligible effect on the losses. A Zemetrics ZeScope three-dimensional optical profiler has been used to directly measure the surface of the core material, confirming a roughness of only ~0.1 nm. The ability to fabricate low-loss polysilicon optical fibers with ultrasmooth cores scalable to submicrometer dimensions should establish their use in a range of nonlinear optical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...