Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 12(5): e0256121, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34634934

RESUMEN

CRISPR interference (CRISPRi) has facilitated the study of essential genes in diverse organisms using both high-throughput and targeted approaches. Despite the promise of this technique, no comprehensive arrayed CRISPRi library targeting essential genes exists for the model bacterium Escherichia coli, or for any Gram-negative species. Here, we built and characterized such a library. Each of the ∼500 strains in our E. coli library contains an inducible, chromosomally integrated single guide RNA (sgRNA) targeting an essential (or selected nonessential) gene and can be mated with a pseudo-Hfr donor strain carrying a dcas9 cassette to create a CRISPRi knockdown strain. Using this system, we built an arrayed library of CRISPRi strains and performed population and single-cell growth and morphology measurements as well as targeted follow-up experiments. These studies found that inhibiting translation causes an extended lag phase, identified new modulators of cell morphology, and revealed that the morphogene mreB is subject to transcriptional feedback regulation, which is critical for the maintenance of morphology. Our findings highlight canonical and noncanonical roles for essential genes in numerous aspects of cellular homeostasis. IMPORTANCE Essential genes make up only ∼5 to 10% of the genetic complement in most organisms but occupy much of their protein synthesis and account for almost all antibiotic targets. Despite the importance of essential genes, their intractability has, until recently, hampered efforts to study them. CRISPRi has facilitated the study of essential genes by allowing inducible and titratable depletion. However, all large-scale CRISPRi studies in Gram-negative bacteria thus far have used plasmids to express CRISPRi components and have been constructed in pools, limiting their utility for targeted assays and complicating the determination of antibiotic effects. Here, we use a modular method to construct an arrayed library of chromosomally integrated CRISPRi strains targeting the essential genes of the model bacterium Escherichia coli. This library enables targeted studies of essential gene depletions and high-throughput determination of antibiotic targets and facilitates studies targeting the outer membrane, an essential component that serves as the major barrier to antibiotics.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli/genética , Técnicas de Silenciamiento del Gen/métodos , Biblioteca de Genes , Genes Esenciales/genética , Transcripción Genética , Proteínas Bacterianas/metabolismo , Ensayos Analíticos de Alto Rendimiento
2.
Cell Syst ; 11(5): 523-535.e9, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33080209

RESUMEN

Essential genes are the hubs of cellular networks, but lack of high-throughput methods for titrating gene expression has limited our understanding of the fitness landscapes against which their expression levels are optimized. We developed a modified CRISPRi system leveraging the predictable reduction in efficacy of imperfectly matched sgRNAs to generate defined levels of CRISPRi activity and demonstrated its broad applicability. Using libraries of mismatched sgRNAs predicted to span the full range of knockdown levels, we characterized the expression-fitness relationships of most essential genes in Escherichia coli and Bacillus subtilis. We find that these relationships vary widely from linear to bimodal but are similar within pathways. Notably, despite ∼2 billion years of evolutionary separation between E. coli and B. subtilis, most essential homologs have similar expression-fitness relationships with rare but informative differences. Thus, the expression levels of essential genes may reflect homeostatic or evolutionary constraints shared between the two organisms.


Asunto(s)
Bacillus subtilis/genética , Escherichia coli/genética , Genes Esenciales/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/metabolismo , Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/genética , Genes Esenciales/fisiología , Aptitud Genética/genética
3.
Nat Microbiol ; 4(2): 244-250, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30617347

RESUMEN

The vast majority of bacteria, including human pathogens and microbiome species, lack genetic tools needed to systematically associate genes with phenotypes. This is the major impediment to understanding the fundamental contributions of genes and gene networks to bacterial physiology and human health. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a versatile method of blocking gene expression using a catalytically inactive Cas9 protein (dCas9) and programmable single guide RNAs, has emerged as a powerful genetic tool to dissect the functions of essential and non-essential genes in species ranging from bacteria to humans1-6. However, the difficulty of establishing effective CRISPRi systems across bacteria is a major barrier to its widespread use to dissect bacterial gene function. Here, we establish 'Mobile-CRISPRi', a suite of CRISPRi systems that combines modularity, stable genomic integration and ease of transfer to diverse bacteria by conjugation. Focusing predominantly on human pathogens associated with antibiotic resistance, we demonstrate the efficacy of Mobile-CRISPRi in gammaproteobacteria and Bacillales Firmicutes at the individual gene scale, by examining drug-gene synergies, and at the library scale, by systematically phenotyping conditionally essential genes involved in amino acid biosynthesis. Mobile-CRISPRi enables genetic dissection of non-model bacteria, facilitating analyses of microbiome function, antibiotic resistances and sensitivities, and comprehensive screens for host-microorganism interactions.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Técnicas Bacteriológicas/métodos , Sistemas CRISPR-Cas , Técnicas Genéticas , Antibacterianos/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Conjugación Genética , Farmacorresistencia Microbiana/genética , Biblioteca de Genes , Redes Reguladoras de Genes , Marcación de Gen , Genes Esenciales/genética , Genoma Bacteriano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...