Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Eng Technol ; 9(2): 141-150, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28236165

RESUMEN

Calcific aortic valve disease (CAVD) is a major cause of morbidity in the aging population, but the underlying mechanisms of its progression remain poorly understood. Aortic valve calcification preferentially occurs on the fibrosa, which is subjected to disturbed flow. The side-specific progression of the disease is characterized by inflammation, calcific lesions, and extracellular matrix (ECM) degradation. Here, we explored the role of mechanosensitive microRNA-181b and its downstream targets in human aortic valve endothelial cells (HAVECs). Mechanistically, miR-181b is upregulated in OS and fibrosa, and it targets TIMP3, SIRT1, and GATA6, correlated with increased gelatinase/MMP activity. Overexpression of miR-181b led to decreased TIMP3 and exacerbated MMP activity as shown by gelatinase assay, and miR-181b inhibition decreased gelatinase activity through the repression of TIMP3 levels. Luciferase assay showed specific binding of miR-181b to the TIMP3 gene. Overexpression of miR-181b in HAVECs subjected to either LS or OS increased MMP activity, and miR-181b inhibition abrogated shear-sensitive MMP activity. These studies suggest that targeting this shear-dependent miRNA may provide a novel noninvasive treatment for CAVD.


Asunto(s)
Válvula Aórtica/metabolismo , Calcinosis/metabolismo , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Enfermedades de las Válvulas Cardíacas/metabolismo , Mecanotransducción Celular , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Regiones no Traducidas 3' , Válvula Aórtica/patología , Sitios de Unión , Calcinosis/genética , Calcinosis/patología , Células Cultivadas , Células Endoteliales/patología , Gelatinasas/metabolismo , Regulación de la Expresión Génica , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/patología , Humanos , MicroARNs/genética , Estrés Mecánico , Inhibidor Tisular de Metaloproteinasa-3/genética
2.
Redox Biol ; 9: 244-253, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27591403

RESUMEN

Oxidative stress represents excessive intracellular levels of reactive oxygen species (ROS), which plays a major role in the pathogenesis of cardiovascular disease. Besides having a critical impact on the development and progression of vascular pathologies including atherosclerosis and diabetic vasculopathy, oxidative stress also regulates physiological signaling processes. As a cell permeable ROS generated by cellular metabolism involved in intracellular signaling, hydrogen peroxide (H2O2) exerts tremendous impact on cardiovascular pathophysiology. Under pathological conditions, increased oxidase activities and/or impaired antioxidant systems results in uncontrolled production of ROS. In a pro-oxidant environment, vascular smooth muscle cells (VSMC) undergo phenotypic changes which can lead to the development of vascular dysfunction such as vascular inflammation and calcification. Investigations are ongoing to elucidate the mechanisms for cardiovascular disorders induced by oxidative stress. This review mainly focuses on the role of H2O2 in regulating physiological and pathological signals in VSMC.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Oxidación-Reducción , Transducción de Señal , Animales , Antioxidantes/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Humanos , Peróxido de Hidrógeno/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
3.
Sci Rep ; 6: 25397, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27151744

RESUMEN

Aortic valve (AV) calcification is an inflammation driven process that occurs preferentially in the fibrosa. To explore the underlying mechanisms, we investigated if key microRNAs (miRNA) in the AV are differentially expressed due to disturbed blood flow (oscillatory shear (OS)) experienced by the fibrosa compared to the ventricularis. To identify the miRNAs involved, endothelial-enriched RNA was isolated from either side of healthy porcine AVs for microarray analysis. Validation using qPCR confirmed significantly higher expression of 7 miRNAs (miR-100, -130a, -181a/b, -199a-3p, -199a-5p, and -214) in the fibrosa versus the ventricularis. Upon bioinformatics analysis, miR-214 was selected for further investigation using porcine AV leaflets in an ex vivo shear system. Fibrosa and ventricularis sides were exposed to either oscillatory or unidirectional pulsatile shear for 2 days and 3 &7 days in regular and osteogenic media, respectively. Higher expression of miR-214, increased thickness of the fibrosa, and calcification was observed when the fibrosa was exposed to OS compared to the ventricularis. Silencing of miR-214 by anti-miR-214 in whole AV leaflets with the fibrosa exposed to OS significantly increased the protein expression of TGFß1 and moderately increased collagen content but did not affect AV calcification. Thus, miR-214 is identified as a side- and shear-dependent miRNA that regulates key mechanosensitive gene in AV such as TGFß1.


Asunto(s)
Válvula Aórtica/patología , Aterosclerosis/patología , MicroARNs/análisis , Animales , Modelos Animales de Enfermedad , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Mecánico , Porcinos
4.
Arterioscler Thromb Vasc Biol ; 35(1): 175-83, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378413

RESUMEN

OBJECTIVE: Vascular calcification is a characteristic feature of atherosclerosis, diabetes mellitus, and end-stage renal disease. We have demonstrated that activation of protein kinase B (AKT) upregulates runt-related transcription factor 2 (Runx2), a key osteogenic transcription factor that is crucial for calcification of vascular smooth muscle cells (VSMC). Using mice with SMC-specific deletion of phosphatase and tensin homolog (PTEN), a major negative regulator of AKT, the present studies uncovered a novel molecular mechanism underlying PTEN/AKT/FOXO (forkhead box O)-mediated Runx2 upregulation and VSMC calcification. APPROACH AND RESULTS: SMC-specific PTEN deletion mice were generated by crossing PTEN floxed mice with SM22α-Cre transgenic mice. The PTEN deletion resulted in sustained activation of AKT that upregulated Runx2 and promoted VSMC calcification in vitro and arterial calcification ex vivo. Runx2 knockdown did not affect proliferation but blocked calcification of the PTEN-deficient VSMC, suggesting that PTEN deletion promotes Runx2-depedent VSMC calcification that is independent of proliferation. At the molecular level, PTEN deficiency increased the amount of Runx2 post-transcriptionally by inhibiting Runx2 ubiquitination. AKT activation increased phosphorylation of FOXO1/3 that led to nuclear exclusion of FOXO1/3. FOXO1/3 knockdown in VSMC phenocopied the PTEN deficiency, demonstrating a novel function of FOXO1/3, as a downstream signaling of PTEN/AKT, in regulating Runx2 ubiquitination and VSMC calcification. Using heterozygous SMC-specific PTEN-deficient mice and atherogenic ApoE(-/-) mice, we further demonstrated AKT activation, FOXO phosphorylation, and Runx2 ubiquitination in vascular calcification in vivo. CONCLUSIONS: Our studies have determined a new causative effect of SMC-specific PTEN deficiency on vascular calcification and demonstrated that FOXO1/3 plays a crucial role in PTEN/AKT-modulated Runx2 ubiquitination and VSMC calcification.


Asunto(s)
Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Factores de Transcripción Forkhead/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Calcificación Vascular/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Genotipo , Integrasas/genética , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas Musculares/genética , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fenotipo , Fosforilación , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Ubiquitinación , Calcificación Vascular/genética , Calcificación Vascular/patología
5.
Circ Res ; 114(7): 1094-102, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24526702

RESUMEN

RATIONALE: Vascular calcification is a serious cardiovascular complication that contributes to the increased morbidity and mortality of patients with diabetes mellitus. Hyperglycemia, a hallmark of diabetes mellitus, is associated with increased vascular calcification and increased modification of proteins by O-linked N-acetylglucosamine (O-GlcNAcylation). OBJECTIVE: We sought to determine the role of protein O-GlcNAcylation in regulating vascular calcification and the underlying mechanisms. METHODS AND RESULTS: Low-dose streptozotocin-induced diabetic mice exhibited increased aortic O-GlcNAcylation and vascular calcification, which was also associated with impaired aortic compliance in mice. Elevation of O-GlcNAcylation by administration of Thiamet-G, a potent inhibitor for O-GlcNAcase that removes O-GlcNAcylation, further accelerated vascular calcification and worsened aortic compliance of diabetic mice in vivo. Increased O-GlcNAcylation, either by Thiamet-G or O-GlcNAcase knockdown, promoted calcification of primary mouse vascular smooth muscle cells. Increased O-GlcNAcylation in diabetic arteries or in the O-GlcNAcase knockdown vascular smooth muscle cell upregulated expression of the osteogenic transcription factor Runx2 and enhanced activation of AKT. O-GlcNAcylation of AKT at two new sites, T430 and T479, promoted AKT phosphorylation, which in turn enhanced vascular smooth muscle cell calcification. Site-directed mutation of AKT at T430 and T479 decreased O-GlcNAcylation, inhibited phosphorylation of AKT at S473 and binding of mammalian target of rapamycin complex 2 to AKT, and subsequently blocked Runx2 transactivity and vascular smooth muscle cell calcification. CONCLUSIONS: O-GlcNAcylation of AKT at 2 new sites enhanced AKT phosphorylation and activation, thus promoting vascular calcification. Our studies have identified a novel causative effect of O-GlcNAcylation in regulating vascular calcification in diabetes mellitus and uncovered a key molecular mechanism underlying O-GlcNAcylation-mediated activation of AKT.


Asunto(s)
Acetilglucosamina/metabolismo , Diabetes Mellitus Experimental/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Calcificación Vascular/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glicosilación , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/genética , Piranos/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Tiazoles/farmacología , Calcificación Vascular/patología , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
6.
Circ Res ; 111(5): 543-52, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22773442

RESUMEN

RATIONALE: Vascular calcification is a hallmark of atherosclerosis, a major cause of morbidity and mortality in the United States. We have previously reported that the osteogenic transcription factor Runx2 is an essential and sufficient regulator of calcification of vascular smooth muscle cells (VSMC) in vitro. OBJECTIVE: To determine the contribution of osteogenic differentiation of VSMC to the pathogenesis of vascular calcification and the function of VSMC-derived Runx2 in regulating calcification in vivo. METHODS AND RESULTS: SMC-specific Runx2-deficient mice, generated by breeding SM22α-Cre mice with the Runx2 exon 8 floxed mice, exhibited normal aortic gross anatomy and expression levels of SMC-specific marker genes. Runx2 deficiency did not affect basal SMC markers, but inhibited oxidative stress-reduced expression of SMC markers. High-fat-diet-induced vascular calcification in vivo was markedly inhibited in the Runx2-deficient mice in comparison with their control littermates. Runx2 deficiency inhibited the expression of receptor activator of nuclear factor κB ligand, which was accompanied by decreased macrophage infiltration and formation of osteoclast-like cells in the calcified lesions. Coculture of VSMC with bone marrow-derived macrophages demonstrated that the Runx2-deficient VSMC failed to promote differentiation of macrophages into osteoclast-like cells. CONCLUSIONS: These data have determined the importance of osteogenic differentiation of VSMC in the pathogenesis of vascular calcification in mice and defined the functional role of SMC-derived Runx2 in regulating vascular calcification and promoting infiltration of macrophages into the calcified lesion to form osteoclast-like cells. Our studies suggest that the development of vascular calcification is coupled with the formation of osteoclast-like cells, paralleling the bone remodeling process.


Asunto(s)
Aterosclerosis/patología , Calcinosis/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Fosfatasa Ácida/metabolismo , Animales , Aterosclerosis/fisiopatología , Remodelación Ósea/fisiología , Calcinosis/fisiopatología , Diferenciación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/deficiencia , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Exones/genética , Femenino , Isoenzimas/metabolismo , Macrófagos/citología , Masculino , Ratones , Ratones Noqueados , Mutagénesis/fisiología , Osteoclastos/citología , Ligando RANK/genética , Ligando RANK/metabolismo , Fosfatasa Ácida Tartratorresistente
7.
Arterioscler Thromb Vasc Biol ; 31(6): 1387-96, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21454810

RESUMEN

OBJECTIVE: Clinical and experimental studies demonstrate the important roles of vascular smooth muscle cells (VSMC) in the pathogenesis of atherosclerosis. We have previously determined that the osteogenic transcription factor Runx2 is essential for VSMC calcification. The present study characterized Runx2-regulated signals and their potential roles in vascular calcification. METHODS AND RESULTS: In vivo studies with atherogenic apolipoprotein E(-/-) mice demonstrated that increased oxidative stress was associated with upregulation of Runx2 and receptor activator of nuclear factor κB ligand (RANKL), which colocalized in the calcified atherosclerotic lesions and were juxtaposed to infiltrated macrophages and osteoclast-like cells that are positively stained for an osteoclast marker, tartrate-resistant acid phosphatase. Mechanistic studies using RNA interference, a luciferase reporter system, chromatin immunoprecipitation, and electrophoretic mobility shift assays indicated that Runx2 regulated the expression of RANKL via a direct binding to the 5'-flanking region of the RANKL. Functional characterization revealed that RANKL did not induce VSMC calcification, nor was RANKL required for oxidative stress-induced VSMC calcification. Using a coculture system, we demonstrated that VSMC-expressed RANKL induced migration as well as differentiation of bone marrow-derived macrophages into multinucleated, tartrate-resistant acid phosphatase-positive osteoclast-like cells. These effects were inhibited by the RANKL antagonist osteoprotegerin and with VSMC deficient in Runx2 or RANKL. CONCLUSION: We demonstrate that Runx2 directly binds to the promoter and controls the expression of RANKL, which mediates the crosstalk between calcifying VSMC and migration and differentiation of macrophages into osteoclast-like cells in the atherosclerotic lesions. Our studies provide novel mechanistic insights into the regulation and function of VSMC-derived RANKL in the pathogenesis of atherosclerosis and vascular calcification.


Asunto(s)
Calcinosis/etiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/fisiología , Macrófagos/fisiología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Osteoclastos/citología , Ligando RANK/fisiología , Enfermedades Vasculares/etiología , Fosfatasa Ácida/análisis , Animales , Aterosclerosis/etiología , Calcinosis/metabolismo , Diferenciación Celular , Movimiento Celular , Regulación de la Expresión Génica , Isoenzimas/análisis , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/fisiología , Estrés Oxidativo , Regiones Promotoras Genéticas , Unión Proteica , Ligando RANK/genética , Fosfatasa Ácida Tartratorresistente , Enfermedades Vasculares/metabolismo
8.
Mol Ther ; 17(12): 2078-87, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19638960

RESUMEN

Physicochemical properties of gene transfer vectors play an important role in both transduction efficiency and biodistribution following airway delivery. Adeno-associated virus (AAV) vectors are currently used in many gene transfer applications; however, the respiratory epithelium remains a challenging target. We synthesized two cationic sterol-based lipids, dexamethasone-spermine (DS) and disubstituted spermine (D(2)S) for pulmonary gene targeting. Scanning and transmission electron micrographs (TEM) confirmed that AAV/lipid formulations produced submicron-sized clusters. When AAV2/9 or AAV2/6.2 were formulated with these cationic lipids, the complexes had positive zeta potential (zeta) and the transduction efficiency in cultured A549 cells increased by sevenfold and sixfold, respectively. Transduction of cultured human airway epithelium with AAV2/6.2-lipid formulations also showed approximately twofold increase in green fluorescence protein (GFP) positive cells as quantified by flow cytometry. Intranasal administration of 10(11) genome copies (GC) of AAV2/9 and AAV2/6.2 coformulated with lipid formulations resulted in an average fourfold increase in transgene expression for both vectors. Formulation of AAV2/9 with DS changed the tropism of this vector for the alveolar epithelium, resulting in successful transduction of conducting airway epithelium. Our results suggest that formulating AAV2/9 and AAV2/6.2 with DS and D(2)S can lead to improved physicochemical characteristics for in vivo gene delivery to lung.


Asunto(s)
Dependovirus/genética , Dexametasona/química , Vectores Genéticos , Lípidos/química , Pulmón/metabolismo , Espermina/química , Animales , Dexametasona/metabolismo , Técnicas de Transferencia de Gen , Humanos , Liposomas , Ratones , Ratones Endogámicos C57BL , Sistema Respiratorio/citología , Sistema Respiratorio/metabolismo , Espermina/metabolismo , beta-Galactosidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...